تعیین شدت حداکثر لاکتات حالت پایدار برای موش‌های صحرایی ویستار در چرخ گردان اجباری

نوع مقاله: مقاله پژوهشی

نویسندگان

گروه تربیت بدنی و علوم ورزشی،دانشکده علوم انسانی، دانشگاه تربیت مدرس، تهران، ایران

چکیده

سابقه و هدف: چرخ گردان اجباری یکی از کارسنج­ های رایج در مطالعات حیوانی است. با توجه به اهمیت شدت فعالیت در تمرینات ورزشی، هدف پژوهش حاضر تعیین شدت حداکثر لاکتات حالت پایدار (MLSS) در موش­های صحرایی ویستار در چرخ گردان اجباری به منظور کمک به تجویز مناسب فعالیت ورزشی است.
مواد و روش­ها: 21 سر موش صحرایی ویستار نر (20±200 گرم) پس از آشنا سازی با چرخ گردان اجباری به صورت تصادفی به 4 گروه آزمون توان فزاینده (تعداد=6)، آزمون توان ثابت با سرعت 5/14 متر­بر­دقیقه (تعداد=5)، آزمون توان ثابت با سرعت 16 متر­بر­دقیقه (تعداد=5) و آزمون توان ثابت با سرعت 17 متر­بر­دقیقه (تعداد=5) تقسیم شدند. بالاترین شدت تلاش حیوان که غلظت لاکتات خون طی دقایق 10 الی 25 آزمون توان ثابت بیش از 1 میلی­ مول در لیتر افزایش نداشت به عنوان شدت حداکثر لاکتات حالت پایدار در نظر گرفته شد.
یافته­ ها: غلظت لاکتات خون آزمون­های توان ثابت در سرعت­های 14.5 متر­ بر­ دقیقه و 16 متر­ بر ­دقیقه بین دقایق 10 الی 25 به حالت پایداری رسید. در حالی که افزایش ناگهانی غلظت لاکتات خون در سرعت 17.5 متر ­بر­ دقیقه مشاهده شد. بنابراین حداکثر لاکتات حالت پایدار، سرعت 16متر بر دقیقه با میانگین غلظت لاکتات 0.91± 3.85مول ­بر ­لیتر در موش صحرایی ویستار در چرخ گردان اجباری تعیین گردید.
نتیجه­ گیری: یافته­ های پژوهش حاضر نشان داد موش­های صحرایی ویستار در سرعت 16 متر ­بر­ دقیقه در چرخ گردان اجباری به MLSS می­رسند. یافته­های این پژوهش کمک بسزایی در طراحی پروتکل­های تمرین ورزشی موش­های صحرایی ویستار در چرخ گردان اجباری در پژوهش­های بعدی می­باشد.

تازه های تحقیق

.

کلیدواژه‌ها


عنوان مقاله [English]

Determination of the Maximal Lactate Steady State Intensity in Wistar Rats on Forced Running Wheel

نویسندگان [English]

  • Sajjad Rezaei
  • Hamid Agha-Alinejad
  • Mahdiyeh Molanouri Shamsi
Physical Education & Sport Sciences Department, Faculty of Humanities, Tarbiat Modares University,Tehran, Iran
چکیده [English]

Background and objective: Forced running wheel is a commonly used ergometer in animal studies. Given the importance of determining exercise intensity in training protocols, the aim of this study was to determine the intensity of exercise corresponding to the maximal lactate steady state (MLSS) in Wistar rats using forced running wheel to prescribe the appropriate exercise intensity.
Method and materials: After a three-week period of familiarization with forced running wheel, 21 male Wistar rats (200 ± 20 g) were randomly assigned to four groups including incremental-power test (n = 6), constant-power test at 14.5 m/min (n = 5), constant-power test at 16 m/min, and constant-power test at 17.5 m/min. The highest intensity of effort inducing an increase in blood lactate concentration of < 1 mmol/L over 10th to 25th minutes of constant-intensity test was considered MLSS.
Results: Blood lactate concentrations at velocities of 14.5 m/min and 16 m/min reached a steady state during 10th to 25th minutes of exercise, while the velocity of 17.5 m/min was characterized by a constant increase in blood lactate concentration. Therefore, the intensity of exercise at velocity of 16 m/min, with mean lactate concentration of 3.85 ± 0.91 mol/L, was considered MLSS.
Conclusion: Our results showed that Wistar rats reach MLSS at 16 m/min on forced running wheel. The findings of this study could contribute significantly to design of training protocols using forced running wheel in Wistar rats for future research.

کلیدواژه‌ها [English]

  • Maximal lactate steady state (MLSS)
  • blood lactate
  • forced running wheel
  • Wistar rats
##Booth FW, Laye MJ, Spangenburg EE. Gold standards for scientists who are conducting animal-based exercise studies. Journal of Applied Physiology. 2010;108(1):219-21.##Voltarelli F, Gobatto C, de Mello M. Determination of anaerobic threshold in rats using the lactate minimum test. Brazilian Journal of Medical and Biological Research. 2002;35(11):1389-94.##Beneke R, Leithäuser RM, Ochentel O. Blood lactate diagnostics in exercise testing and training. Int J Sports Physiol Perform. 2011;6(1):8-24.##Manchado FdB, Gobatto CA, Voltarelli FA, Rostom de Mello MA. Non-exhaustive test for aerobic capacity determination in swimming rats. Applied Physiology, Nutrition, and Metabolism. 2006;31(6):731-6.##Gobatto CA, De Mello MAR, Sibuya CY, De Azevedo JRM, Dos Santos LA, Kokubun E. Maximal lactate steady state in rats submitted to swimming exercise. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 2001;130(1):21-7.##Contarteze RVL, Manchado FDB, Gobatto CA, De Mello MAR. Stress biomarkers in rats submitted to swimming and treadmill running exercises. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 2008;151(3):415-22.##Beneke R, Leithäuser R, Hütler M. Dependence of the maximal lactate steady state on the motor pattern of exercise. British Journal of Sports Medicine. 2001;35(3):192-6.##Heck H, Mader A, Hess G, Mücke S, Müller R, Hollmann W. Justification of the 4-mmol/l lactate threshold. International journal of sports medicine. 1985(6):117-30.##Lindner A. Maximal lactate steady state during exercise in blood of horses. Journal of animal science. 2010;88(6):2038-44.##Ferreira JC, Rolim NP, Bartholomeu JB, Gobatto CA, Kokubun E, Brum PC. Maximal lactate steady state in running mice: effect of exercise training. Clinical and experimental pharmacology and physiology. 2007;34(8):760-5.##Cunha RR, de Carvalho Cunha VN, Segundo PR, Moreira SR, Kokubun E, Campbell CSG, et al. Determination of the lactate threshold and maximal blood lactate steady state intensity in aged rats. Cell biochemistry and function. 2009;27(6):351-7.##Almeida JA, Petriz BA, da Costa Gomes CP, Pereira RW, Franco OL. Assessment of maximal lactate steady state during treadmill exercise in SHR. BMC research notes. 2012;5(1):661.##Almeida J, Petriz B, Gomes C, Rocha L, Pereira R, Franco O. Determination of the maximal lactate steady state in obese Zucker rats. Int J Sports Med. 2013;34(3):214-7.##Manchado F, Gobatto R, Contarteze M, Papoti M, Mello. Maximal Lactate Steady State in running rats. The American Society of Exercise Physiologists (ASEP). 2005;8(4).##Petriz BA, Almeida JA, Gomes CP, Ernesto C, Pereira RW, Franco OL. Exercise performed around MLSS decreases systolic blood pressure and increases aerobic fitness in hypertensive rats. BMC physiology. 2015;15(1):1.##Beneke R, von DUVILLARD SP. Determination of maximal lactate steady state response in selected sports events. Medicine and Science in Sports and Exercise. 1996;28(2):241-6.##Manchado FdB, Gobatto CA, Contarteze RVL, Papoti M, Mello MARd. The maximal lactate steady state is ergometer-dependent in experimental model using rats. Revista Brasileira de Medicina do Esporte. 2006;12(5):259-62.##Van Praag H, Kempermann G, Gage FH. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nature neuroscience. 1999;2(3):266-70.##Adlard PA, Perreau VM, Cotman CW. The exercise-induced expression of BDNF within the hippocampus varies across life-span. Neurobiology of aging. 2005;26(4):511-20.##Pang T, Stam N, Nithianantharajah J, Howard M, Hannan A. Differential effects of voluntary physical exercise on behavioral and brain-derived neurotrophic factor expression deficits in Huntington’s disease transgenic mice. Neuroscience. 2006;141(2):569-84.##Gollnick PD, King DW. Effect of exercise and training on mitochondria of rat skeletal muscle. American Journal of Physiology--Legacy Content. 1969;216(6):1502-9.##Kavanau JL. Behavior of captive white-footed mice. Science. 1967;155(3770):1623-39.##Leasure J, Jones M. Forced and voluntary exercise differentially affect brain and behavior. Neuroscience. 2008;156(3):456-65.##Legerlotz K, Elliott B, Guillemin B, Smith HK. Voluntary resistance running wheel activity pattern and skeletal muscle growth in rats. Experimental physiology. 2008;93(6):754-62.##  Greenwood BN, Spence KG, Crevling DM, Clark PJ, Craig WC, Fleshner M. Exercise‐induced stress resistance is independent of exercise controllability and the medial prefrontal cortex. European Journal of Neuroscience. 2013;37(3):469-78.##Ploughman M, Granter-Button S, Chernenko G, Tucker B, Mearow K, Corbett D. Endurance exercise regimens induce differential effects on brain-derived neurotrophic factor, synapsin-I and insulin-like growth factor I after focal ischemia. Neuroscience. 2005;136(4):991-1001.##Winter B, Breitenstein C, Mooren FC, Voelker K, Fobker M, Lechtermann A, et al. High impact running improves learning. Neurobiology of learning and memory. 2007;87(4):597-609.##Forristall J, Hookey B, Grant V. Conditioned taste avoidance induced by forced and voluntary wheel running in rats. Behavioural processes. 2007;74(3):326-33.##Caton SJ, Bielohuby M, Bai Y, Spangler LJ, Burget L, Pfluger P, et al. Low-carbohydrate high-fat diets in combination with daily exercise in rats: effects on body weight regulation, body composition and exercise capacity. Physiology & behavior. 2012;106(2):185-92.##Christensen SD, Mikkelsen L, Fels J, Bodvarsdottir T, Hansen A. Quality of plasma sampled by different methods for multiple blood sampling in mice. Laboratory animals. 2009;43(1):65-71.##Tanner RK, Fuller KL, Ross ML. Evaluation of three portable blood lactate analysers: Lactate Pro, Lactate Scout and Lactate Plus. European journal of applied physiology. 2010;109(3):551-9.##Kennard JA, Woodruff-Pak DS. A comparison of low- and high-impact forced exercise: Effects of training paradigm on learning and memory. Physiology & Behavior. 2012;106(4):423-7.##Caton SJ, Bielohuby M, Bai Y, Spangler LJ, Burget L, Pfluger P, et al. Low-carbohydrate high-fat diets in combination with daily exercise in rats: Effects on body weight regulation, body composition and exercise capacity. Physiology & Behavior. 2012;106(2):185-92.##Chen, C.C., Chang, M.W., Chang, C.P., Chan, S.C., Chang, W.Y., Yang, C.L., & Lin, M.T.. (2014). A forced running wheel system with a microcontroller that provides high-intensity exercise training in an animal ischemic stroke model. Brazilian Journal of Medical and Biological Research, 47(10), 858-868. Epub August 15, 2014.##Chen CC, Chang MW, Chang CP, Chang WY, Chang SC, et al. (2015) Improved Infrared-Sensing Running Wheel Systems with an Effective Exercise Activity Indicator. PLoS ONE 10(4): e0122394.##