اثر 8 هفته تمرین استقامتی بر سطوح سرمی فاکتور رشدی فیبروبلاست1 و مقاومت انسولین در زنان دیابتی نوع 2

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد فیزیولوژی ورزشی، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه شهید باهنر کرمان،کرمان، ایران

2 دانشیار گروه فیزیولوژی ورزشی، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه شهید باهنر کرمان،کرمان، ایران

3 استادیارگروه فیزیولوژی ورزشی، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه شهید باهنر کرمان، ایران

10.22080/jaep.2022.22747.2079

چکیده

زمینه و هدف: فاکتور رشد فیبروبلاست 1(FGF1)، یک پلی پپتید غیر گلیکوزیله شده است که توسط ماکروفاژها تولید می شود و در فرایند های مختلف فیزیولوژیکی نظیر تنظیم هموستاز گلوکز نقش دارد. هدف از پژوهش حاضر، بررسی اثر تمرین استقامتی بر تغییرات سطوح سرمی فاکتور رشدی فیبروبلاست1 و مقاومت انسولین پلاسما در زنان دیابتی نوع 2 بود.
مواد و روش‌ها: 22 زن دیابتی به طور تصادفی به دو گروه کنترل (10 نفر) و تجربی (12 نفر) تقسیم شدند. گروه تمرین هشت هفته تمرین استقامتی با شدت 65 تا 80 درصد حداکثر ضربان قلب را به مدت 30 تا 45 دقیقه اجرا کردند. قبل از اجرای پروتکل تمرینی و 48 ساعت بعد از آخرین جلسه تمرین نمونه جمع آوری شد. سطوح سرمی FGF1 و انسولین پلاسما با روش الایزا و غلظت گلوکز با روش گلوکز اکسیداز  اندازه گیری و با استفاده از آنالیز کوواریانس بین گروه ها مقایسه شد. ارتباط بین متغیر ها با آزمون همبستگی پیرسون سنجیده شد.
نتایج: نتایج نشان دادکه انجام تمرین استقامتی، باعث افزایش معنی دار سطوحFGF1 سرم (01/0>P) و کاهش معنی دار انسولین پلاسما (01/0>P)، گلوکز پلاسما (01/0=P) و شاخص مقاومت به انسولین (01/0>P) شد. همچنین بعد از انجام هشت هفته تمرین استقامتی، بین میزان تغییرات FGF1 و انسولین پلاسما(02/0=P) و مقاومت به انسولین (05/0=P) همبستگی معنی دار وجود داشت. . 2/37 درصد از تغییرات HOMA-IR با تغییرات FGF1 سرم قابل پیش بینی بود.
نتیجه‌گیری: به طور کلی نتایج نشان داد FGF1 فاکتوری تمرین پذیر است و بخشی از اثرات مفید تمرین استقامتی در بهبود دیابت بوسیله تغییرات سطوح سرمی FGF1 واسطه گری می شود.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of 8 weeks of endurance training on serum levels of fibroblast growth factor 1 and insulin resistance in type 2 diabetic women

نویسندگان [English]

  • Fatemeh Ghalandari 1
  • Rohollah Nikooie 2
  • Darioush Moflehi 3
1 Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Shahid Bahonar University of kerman, Kerman, Iran
2 Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Shahid Bahonar University of kerman, Kerman, Iran
3 Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Shahid Bahonar University of kerman, Kerman, Iran
چکیده [English]

Background & Purpose: Fibroblast growth factor 1 (FGF1) is a non-glycosylated polypeptide produced by macrophages and involved in various physiological processes including glucose homeostasis. The aim of this study was to investigate the effect of endurance training on changes in serum levels of FGF1 and insulin resistance in type 2 diabetic women.
Methodology: 22 diabetic women were randomly divided into control (n=10) and trained (n=12) groups. The trained group performed eight weeks of endurance training at intensity ranged from 65 to 80% of maximum heart rate for 30-45 minutes.  Blood samples were taken before the training protocol and 48 hours following the last exercise session. Serum FGF1 and plasma insulin were measured by ELISA technique and plasma glucose levels was measured by glucose oxidase method, and compared between the groups using analysis of covariance (ANCOVA). The relationship between variables was measured by Pearson correlation test.
Results: The results showed that endurance training significantly increases serum FGF1 levels (P<0.01) and decreases plasma insulin (P<0.01), glucose (P=0.01) and HOMA-IR (P<0.01). Meanwhile, a significant correlation was found between the changes in FGF1 with both plasma insulin (P=0.02) and insulin resistance (P=0.05) at the end of the study. 37.2% of serum HOMA IR changes could be predicted with the changes in FGF1 serum levels.
Conclusion: In sum, the results showed that FGF1 could be effected by chronic endurance training and beneficial effects of endurance training in diabetes, at least in part, is mediated by changes in serum FGF1 levels.

کلیدواژه‌ها [English]

  • Endurance exercise
  • Fibroblast growth factor 1
  • Type 2 diabetes
##Amirabadi, F., Asadi, M., & Tabrizi, A. (2016). The effect of endurance training and use of cinnamon supplement on antioxidant index and lipid peroxidation as additional care in middle-aged female diabetic type II patients. Journal of Diabetes Nursing, 4(3), 48-59. ##Association, A. D. (2014). Diagnosis and classification of diabetes mellitus. Diabetes care, 37(Supplement 1), S81-S90. ##Bentsen, M. A., Rausch, D. M., Mirzadeh, Z., Muta, K., Scarlett, J. M., Brown, J. M., . . . Alonge, K. M. (2020). Transcriptomic analysis links diverse hypothalamic cell types to fibroblast growth factor 1-induced sustained diabetes remission. Nature communications, 11(1), 1-16. ##Christ-Roberts, C. Y., Pratipanawatr, T., Pratipanawatr, W., Berria, R., Belfort, R., Kashyap, S., & Mandarino, L. J. (2004). Exercise training increases glycogen synthase activity and GLUT4 expression but not insulin signaling in overweight nondiabetic and type 2 diabetic subjects. Metabolism, 53(9), 1233-1242. ## Fan, L., Ding, L., Lan, J., Niu, J., He, Y., & Song, L. (2019). Fibroblast growth factor-1 improves insulin resistance via repression of JNK-mediated inflammation. Frontiers in pharmacology, 10, 1478. ## Flores-Opazo, M., McGee, S. L., & Hargreaves, M. (2020). Exercise and GLUT4. Exercise and sport sciences reviews, 48(3), 110-118. ##Gasser, E., Moutos, C. P., Downes, M., & Evans, R. M. (2017). FGF1—a new weapon to control type 2 diabetes mellitus. Nature Reviews Endocrinology, 13(10), 599-609. ## Gholami, M., Eftekhari, E., Zafari, A., & Solatzadeh, O. (2017). Effect of eight weeks low and moderate intensity aerobic training on levels of HbA1C, some hematological parameters and percent body fat in overweight and obese men with type 2 diabetes. Metabolism and Exercise, 7(2), 155-168. ##Handschin, C., & Spiegelman, B. M. (2008). The role of exercise and PGC1α in inflammation and chronic disease. Nature, 454(7203), 463-469. ##Irfannuddin, I., Santoso, B., Zein, R. H., & Naufal, A. F. (2019). The effect of aerobic exercise and caloric restriction on mice’s brain tissue PGC-1α levels and their memory abilities. Journal of Physics: Conference Series, ## Jeon, J. Y., Ko, S.-H., Kwon, H.-S., Kim, N. H., Kim, J. H., Kim, C. S., . . . Choi, S. H. (2013). Prevalence of diabetes and prediabetes according to fasting plasma glucose and HbA1c. Diabetes & metabolism journal, 37(5), 349-357. ##Jonker, J. W., Suh, J. M., Atkins, A. R., Ahmadian, M., Li, P., Whyte, J., . . . Phillips, C. T. (2012). A PPARγ–FGF1 axis is required for adaptive adipose remodelling and metabolic homeostasis. Nature, 485(7398), 391-394. ##Kang, S., Woo, J. H., Shin, K. O., Kim, D., Lee, H.-J., Kim, Y. J., & Yeo, N. H. (2009). Circuit resistance exercise improves glycemic control and adipokines in females with type 2 diabetes mellitus. Journal of sports science & medicine, 8(4), 682. ##Karami, M., & Banitalebi, E. (2017). The comparision of effect of 8 weeks of intense interval training and combined strength-endurance training on fibroblast growth factor-21 (FGF-21) levels in women with type 2 diabetes. Journal of Nursing Education, 6(3), 37-46. ## Keihanian, A., Arazi, H., & Kargarfard, M. (2019). Effects of aerobic versus resistance training on serum fetuin-A, fetuin-B, and fibroblast growth factor-21 levels in male diabetic patients. Physiology international, 106(1), 70-80. ##Kim, H.-J., Li, Q., Song, W.-J., Yang, H.-M., Kim, S.-Y., Park, S.-C., . . . Youn, H.-Y. (2018). Fibroblast growth factor-1 as a mediator of paracrine effects of canine adipose tissue-derived mesenchymal stem cells on in vitro-induced insulin resistance models. BMC veterinary research, 14(1), 1-10. ##Koval, J. A., DeFronzo, R. A., O’Doherty, R. M., Printz, R., Ardehali, H., Granner, D. K., & Mandarino, L. J. (1998). Regulation of hexokinase II activity and expression in human muscle by moderate exercise. American Journal of Physiology-Endocrinology And Metabolism, 274(2), E304-E308. ## Li, X. (2019). The FGF metabolic axis. Frontiers of medicine, 13(5), 511-530. ##Liang, G., Song, L., Chen, Z., Qian, Y., Xie, J., Zhao, L., . . . Li, X. (2018). Fibroblast growth factor 1 ameliorates diabetic nephropathy by an anti-inflammatory mechanism. Kidney international, 93(1), 95-109. ##Marton, O., Koltai, E., Takeda, M., Koch, L. G., Britton, S. L., Davies, K. J., . . . Radak, Z. (2015). Mitochondrial biogenesis-associated factors underlie the magnitude of response to aerobic endurance training in rats. Pflügers Archiv-European Journal of Physiology, 467(4), 779-788. ##Miller, D. L., Ortega, S., Bashayan, O., Basch, R., & Basilico, C. (2000). Compensation by fibroblast growth factor 1 (FGF1) does not account for the mild phenotypic defects observed in FGF2 null mice. Molecular and cellular biology, 20(6), 2260-2268. ##Mohammadi, M., Olsen, S. K., & Ibrahimi, O. A. (2005). Structural basis for fibroblast growth factor receptor activation. Cytokine & growth factor reviews, 16(2), 107-137. ##Morville, T., Sahl, R. E., Trammell, S. A., Svenningsen, J. S., Gillum, M. P., Helge, J. W., & Clemmensen, C. (2018). Divergent effects of resistance and endurance exercise on plasma bile acids, FGF19, and FGF21 in humans. JCI insight, 3(15). ##Ozougwu, J., Obimba, K., Belonwu, C., & Unakalamba, C. (2013). The pathogenesis and pathophysiology of type 1 and type 2 diabetes mellitus. Journal of physiology and pathophysiology, 4(4), 46-57. ## Powers, C., McLeskey, S., & Wellstein, A. (2000). Fibroblast growth factors, their receptors and signaling. Endocrine-related cancer, 7(3), 165-197. ##Raju, R., Palapetta, S. M., Sandhya, V. K., Sahu, A., Alipoor, A., Balakrishnan, L., . . . Geetha, N. (2014). A network map of FGF-1/FGFR signaling system. Journal of signal transduction, 2014. ##Rao, S., Sundaram, S., & Duvuru, P. (2011). Carcinoma ex pleomorphic adenoma: a rare sight on cytology. Sri Ramachandra J Med, 4, 45-47. ##Richter, E. A., & Hargreaves, M. (2013). Exercise, GLUT4, and skeletal muscle glucose uptake. Physiological reviews. ##Saydi, A., & Sheikholeslami-Vatani, D. (2019). The Effect of Resistance Training with High and Moderate Intensities on Lipid Profile, Glycemic Index and FGF21 in Type 2 Diabetic Patients. Sport Physiology & Management Investigations, 11(3), 89-103. ##Scarlett, J. M., Muta, K., Brown, J. M., Rojas, J. M., Matsen, M. E., Acharya, N. K., . . . Høeg-Jensen, T. (2019). Peripheral mechanisms mediating the sustained antidiabetic action of FGF1 in the brain. Diabetes, 68(3), 654-664. ##Scarlett, J. M., Rojas, J. M., Matsen, M. E., Kaiyala, K. J., Stefanovski, D., Bergman, R. N., . . . Wasserman, D. H. (2016). Central injection of fibroblast growth factor 1 induces sustained remission of diabetic hyperglycemia in rodents. Nature medicine, 22(7), 800-806. ## Steiner, J. L., Murphy, E. A., McClellan, J. L., Carmichael, M. D., & Davis, J. M. (2011). Exercise training increases mitochondrial biogenesis in the brain. Journal of Applied Physiology, 111(4), 1066-1071. ## Struik, D., Dommerholt, M. B., & Jonker, J. W. (2019). Fibroblast growth factors in control of lipid metabolism: from biological function to clinical application. Current opinion in lipidology, 30(3), 235. ##Suh, J. M., Jonker, J. W., Ahmadian, M., Goetz, R., Lackey, D., Osborn, O., . . . van Dijk, T. H. (2014). Endocrinization of FGF1 produces a neomorphic and potent insulin sensitizer. Nature, 513(7518), 436-439. ## Tennant, K. G., Lindsley, S. R., Kirigiti, M. A., True, C., & Kievit, P. (2019). Central and peripheral administration of fibroblast growth factor 1 improves pancreatic islet insulin secretion in diabetic mouse models. Diabetes, 68(7), 1462-1472. ## Uth, N., Sørensen, H., Overgaard, K., & Pedersen, P. K. (2004). Estimation of V̇ O 2max from the ratio between HR max and HR rest–the Heart Rate Ratio Method. European Journal of Applied Physiology, 91(1), 111-115. ##Wang, S., Yang, Q., Yu, S., Pan, R., Jiang, D., Liu, Y., . . . Xue, H. (2016). Fibroblast growth factor 1 levels are elevated in newly diagnosed type 2 diabetes compared to normal glucose tolerance controls. Endocrine journal, 63(4), 359-365. ##Wu, Y., Li, Y., Jiang, T., Yuan, Y., Li, R., Xu, Z., . . . Xie, L. (2018). Reduction of cellular stress is essential for Fibroblast growth factor 1 treatment for diabetic nephropathy. Journal of cellular and molecular medicine, 22(12), 6294-6303. ##Wu, Y., Wu, C., Ye, L., Wang, B., Yuan, Y., Liu, Y., . . . Jiang, T. (2020). Exogenous fibroblast growth factor 1 ameliorates diabetes-induced cognitive decline via coordinately regulating PI3K/AKT signaling and PERK signaling. Cell Communication and Signaling, 18, 1-15. ##Xiong, Y., Chen, Y., Liu, Y., & Zhang, B. (2020). Moderate-Intensity Continuous Training Improves FGF21 and KLB Expression in Obese Mice. Biochemistry (Moscow), 85(8), 938-946. ##Zakrzewska, M., Marcinkowska, E., & Wiedlocha, A. (2008). FGF-1: from biology through engineering to potential medical applications. Critical reviews in clinical laboratory sciences, 45(1), 91-135. ##