نقش تمرین بدنی با شدت متوسط در پیشگیری از بیماری کرونا (Covid-19) یک مطالعه مروری روایتی

نوع مقاله : مقاله مروری

نویسنده

استادیار گروه علوم ورزشی، دانشکده علوم انسانی، دانشگاه کاشان، کاشان، ایران.

10.22080/jaep.2022.22880.2087

چکیده

بیماری ویروس کرونا (COVID-19) یک بحران عمومی جهانی است. پاسخ ایمنی بدن میزبان به ویروس به عواملی مانند ژنتیک، سن، وضعیت جسمی و گیرنده اصلی آن (آنزیم تبدیل کننده آنژیوتانسین2) بستگی دارد. به طوریکه عموما افراد سالمند، چاق و دیابت نوع 2 با شرایط شدید این بیماری مواجه می شوند. از طرفی تمرینات بدنی سیستم ایمنی بدن را تعدیل می کند. در حین و پس از تمرین بدنی، سیتوکین های پیش التهابی و ضد التهابی آزاد می شوند و لنفوسیت های در گردش خون افزایش می‌یابد. انجام تمرین بدنی سبب کاهش بروز بیماری، شدت علائم بیماری و مرگ و میر در عفونت های ویروسی می شود. در این مطالعه مروری روایتی مقالات مرتبط از تمام پایگاه های اطلاعاتی از جمله PubMed، ISI، Scopus و Google scholar مورد بررسی قرار گرفت. همچنین در فرایند جستجوی مقالات از کلید واژه های ویروس کرونا، کووید19، تمرین بدنی با شدت متوسط، تمرین بدنی با شدت بالا و سیستم ایمنی بدن استفاده شد. مطالعات مختلف گزارش کرده‌اند که سرکوب پاسخ اینترفرون نوع1(IFN-I) در بیماری COVID-19 مشاهده شده است. در شرایط شدید بیماری، طوفان‌های سیتوکین‌های پیش التهابی و لنفوپنیا اتفاق می‌افتد. از طرف دیگر تمرین بدنی با شدت متوسط باعث تقویت سیستم ایمنی بدن می‌شود و به پیشگیری از بیماری‌های واگیر ویروسی کمک می‌کند. اما تمرین بدنی با شدت بالا می تواند اثرات منفی بر سیستم ایمنی بگذارد که این عامل باعث کاهش عملکرد سیستم ایمنی بدن فرد و افزایش احتمال ابتلا به بیماری‌های عفونی باشد. بنابراین، تمرین منظم با شدت متوسط به عنوان یک ابزار کمکی برای تقویت سیستم ایمنی بدن برای بیماری کرونا محسوب می‌شود. در رابطه با نقش تمرین بدنی بر سیستم ایمنی جهت مقابله با ویروس کرونا به مطالعات بیشتری نیاز است.

کلیدواژه‌ها


عنوان مقاله [English]

The role of moderate-intensity exercise training in the prevention of Coronavirus disease (COVID-19): A narrative review study

نویسنده [English]

  • Fatemeh Kazeminasab
Department of Physical Education and Sport Sciences, Faculty of Humanities, University of Kashan, Kashan, Iran
چکیده [English]

Coronavirus disease (COVID-19) is a public world crisis. The host's immune response to the virus depends on factors such as genetics, age, physical condition and its main receptor angiotensin-converting enzyme 2). As is generally the elderly, obese and type 2 diabetes with severe conditions encountered. On the other hand, exercise training modulates the immune system. During and after exercise, pro-inflammatory and anti-inflammatory cytokines are released and circulating lymphocytes increases. Exercise training reduces the incidence of disease, the severity of symptoms and mortality from viral infections. In this narrative review study, related articles from all databases including PubMed, ISI, Scopus and Google scholar were examined. Also, in the article search process, the keywords of Coronavirus, Covid-19, moderate-intensity exercise training, high-intensity exercise training and immune system were used. Various studies have reported suppression of the interferon type 1(IFN-I) response in COVID-19. In the severe disease conditions, storms of pro-inflammatory cytokines and lymphopenia occur. On the other hand, exercise training with moderate intensity strengthens the immune system and helps prevent infectious viral diseases. But high-intensity exercise training can have negative effects on the immune system, which reduces the function of the immune system and increases the risk of infectious diseases. Therefore, regular moderate-intensity exercise is considered as an aid tool for strengthening the immune system for coronavirus. More studies are needed on the role of exercise training on the immune system to against the coronavirus.

کلیدواژه‌ها [English]

  • Immune system
  • Exercise training
  • Corona irus
  • Covid-19
##Ahmadi Hekmatikar A. H., & Molanouri, S. M. (2020). Effect of Exercise on Immunological Indicators During the COVID-19 Pandemic. 23(5), 584-603 [In persian].  doi:10.32598/JAMS.23.COV.6277.1##Andersen, C. J., & Murphy, K. E. (2016). Impact of obesity and metabolic syndrome on immunity. 7(1), 66-75. doi:10.3945/an.115.010207##Ayres, J. S. (2020). A metabolic handbook for the COVID-19 pandemic. 2(7), 572-585. doi:10.1038/s42255-020-0237-2##Blagosklonny, M. V. (2020). From causes of aging to death from COVID-19. 12(11):10004-10021. doi:10.18632/aging.103493##Bornstein, S. R., & Dalan, R., (2020). Endocrine and metabolic link to coronavirus infection. 16(6), 297-298. ## Brickson, S., & Hollander, J.O. (2001). Oxidant production and immune response after stretch injury in skeletal muscle. 33(12), 2010-2015. doi:10.1097/00005768-200112000-00006##Cannon, J. G. (2000). Inflammatory cytokines in nonpathological states. 15(6), 298-303. doi:10.1152/physiologyonline.2000.15.6.298. ##Cardoso, A. M. (2010). The persistence of acute respiratory infections as a Public Health Problem. In: SciELO Public Health. 26(7):1271. ##Chowdhury, M. A., & Hossain, N. (2020). Immune response in COVID-19: A review. 13(11):1619-1629. doi:10.1016/j.jiph.2020.07.001. ##Dixit, S. J. (2020). Can moderate intensity aerobic exercise be an effective and valuable therapy in preventing and controlling the pandemic of COVID-19? 143:109854. doi:10.1016/j.mehy.2020.109854. ##Dragoş, D., & Tănăsescu, M. D. (2010). The effect of stress on the defense systems. 3(1), 10-8. ##Ewers, I., & Rizzo, L. V.(2008). Imunologia e envelhecimento. 6(Suppl 1), S13-S20. ##Fallon, K. (2020). Exercise in the time of COVID-19. Aust J Gen Pract; 49 Suppl 13. doi:10.31128/AJGP-COVID-13 ##Ferreira, M. J., & Irigoyen, M. C. (2020). Physically active lifestyle as an approach to confronting COVID-19. 114(4):601-602. ##Gleeson, M., & Bishop, N. C. (2011). The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. 11(9), 607-615. doi:10.1038/nri3041 ##Gleeson, M., & McFarlin, B. (2006). Exercise and Toll-like receptors. 12(1), 34-53. ##Guidi, L., & Tricerri, A. (1998). Psychoneuroimmunology and aging. 44(5), 247-261. doi:10.1159/000022021##Hardenberg, J. H. B., & Luft, F. C. (2020). Covid‐19, ACE2 and the kidney. In: Wiley Online Library. 230(1):e13539. doi:10.1111/apha.13539##Hausera, A., & Counottea, M. J. (2020). Estimation of SARS-CoV-2 mortality during the early stages of an epidemic: A modeling study in Hubei, China, and six regions in Europe. 17(7), e1003189. doi:10.1371/journal.pmed.1003189##Honce, R., & Schultz-Cherry, S. (2019). Impact of obesity on influenza A virus pathogenesis, immune response, and evolution. 10;10:1071. doi:10.3389/fimmu.2019.01071##Jordan, S. C. (2021). Innate and adaptive immune responses to SARS‐CoV‐2 in humans: relevance to acquired immunity and vaccine responses. 204(3), 310-320. doi:10.1111/cei.13582##Kazeminasab, F., & Marandi, M. (2017). Effects of a 4-week aerobic exercise on lipid profile and expression of LXRα in rat liver. 19(1), 45-49. doi:10.22074/cellj.2016.4871##Kazeminasab, F., & Marandi, S. M. (2018). A comparative study on the effects of high-fat diet and endurance training on the PGC-1α-FNDC5/irisin pathway in obese and nonobese male C57BL/6 mice. Applied physiology, nutrition, and metabolism, 43(7), 651-662. doi:10.1139/apnm-2017-0614##Laddu, D. R., & Lavie, C. J. (2020). Physical activity for immunity protection: Inoculating populations with healthy living medicine in preparation for the next pandemic. 64, 102-104. ##Lavie, C. J., & Lee, D.C. (2015). Effects of running on chronic diseases and cardiovascular and all-cause mortality. Mayo Clinic Proceedings. 90(11):1541-52. doi:10.1016/j.mayocp.2015.08.001##Leandro, C. G., & Silva, W. T. F. (2020). Covid-19 and exercise-induced immunomodulation. 27(1):75-78. doi:10.1159/000508951##Leung, C., & Wong, A. P. (2020). The role of angiotensin-converting enzyme 2 (ACE2) receptor in the intestine in COVID-19: more research needed. 13(4), 280-281. ## Li, G., & He, X. (2020). Assessing ACE2 expression patterns in lung tissues in the pathogenesis of COVID-19. 112:102463. ##Li, X., & Geng, M. (2020). Molecular immune pathogenesis and diagnosis of COVID-19. 10(2), 102-108. doi:10.1016/j.jpha.2020.03.001##Liu ,J., Li, S., Liu, J., ... Zheng, X. (2020). Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. 102763. 55:102763. ## Lu, R., Zhao, X., Li, J., Niu, P., … Tan, W. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. 395(10224), 565-574. doi:10.1016/S0140-6736(20)30251-8. ##Luzi, L., & Radaelli, M. G. (2020). Influenza and obesity: its odd relationship and the lessons for COVID-19 pandemic. 1-6. 57(6):759-764. doi:10.1007/s00592-020-01522-8. ##Malm, C., & Sjödin, L. B., (2004). Leukocytes, cytokines, growth factors and hormones in human skeletal muscle and blood after uphill or downhill running. 556(3), 983-1000. Medicine. (2020). Staying Active During the Coronavirus Pandemic [Internet]. ##Milner, J. J., & Beck, M. A. (2012). The impact of obesity on the immune response to infection. 71(2), 298-306. ##Nieman, D. C., & Wentz, L. M. (2019). The compelling link between physical activity and the body's defense system. 8(3):201-217. ##Nieman, D. C. (2020). COVID-19: A tocsin to our aging, unfit, corpulent, and immunodeficient society. 9(4):293-301. ##Oshida, Y., & Yamanouchi, K. (1988). Effect of acute physical exercise on lymphocyte subpopulations in trained and untrained subjects. 9(2):137-40. doi:10.1055/s-2007-1024995. ##Peake, J. (2020). Interrelations between acute and chronic exercise stress and the immune and endocrine systems. In Endocrinology of physical activity and sport (pp. 249-266). Springer. ## Pedersen, B. K., & Hoffman-Goetz, L. (2000). Exercise and the immune system: regulation, integration, and adaptation. 80(3):1055-81. doi:10.1152/physrev.2000.80.3.1055##Pedersen, B. K., & Toft, A. D. (2000). Effects of exercise on lymphocytes and cytokines. Pedersen, B. K., & Toft, A. 34(4):246-51. ##Pedersen, B. K. (2000). Exercise and cytokines. 78(5):532-5. ##Prado, W. L. d., & Lofrano, M. C. (2009). Obesity and inflammatory adipokines: practical implications for exercise prescription. 15(5), 378-383. doi:10.1590/S1517-86922009000600012##Prompetchara, E., & Ketloy, C. (2020). Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. 38(1):1-9. doi:10.12932/AP-200220-0772##Raiol, R. A. (2020). Praticar exercícios físicos é fundamental para a saúde física e mental durante a Pandemia da COVID-19/Physical exercise is essential for physical and mental health during the COVID-19 Pandemic. 3(2), 2804-2813. ##Ranasinghe, C., & Ozemek, C. (2020). Exercise and well-being during COVID 19–time to boost your immunity. 18(12):1195-1200. doi:10.1080/14787210.2020.1794818##Sanchis-Gomar, F., & Lavie, C. J. (2020). Obesity and outcomes in COVID-19: when an epidemic and pandemic collide. Mayo Clinic Proceedings. 95(7):1445-1453. doi:10.1016/j.mayocp.2020.05.006 ##Shephard, R. J., & Shek, P. N. (1999). Effects of exercise and training on natural killer cell counts and cytolytic activity. 28(3):177-95. doi:10.2165/00007256-199928030-00003##Shirvani, H., & Rostamkhani, F. (2020). Exercise considerations during coronavirus disease 2019 (COVID-19) Outbreak: A narrative review. 22(2), 161-168. ##Simpson, R. J., & Katsanis, E. (2020). The immunological case for staying active during the COVID-19 pandemic. 87:6-7. ##Simpson, R. J., & Kunz, H. (2015). Exercise and the regulation of immune functions. In Progress in molecular biology and translational science. 135:355-80. doi:10.1016/bs.pmbts.2015.08.001##Tufan, A., & GÜLER, A. A. (2020). COVID-19, immune system response, hyperinflammation and repurposing antirheumatic drugs. 50(SI-1):620-632. doi:10.3906/sag-2004-168 ##Vas, P., & Hopkins, D. (2020). Diabetes, obesity and COVID‐19: a complex interplay. 22(10):1892-1896. doi:10.1111/dom.14134 ##Walsh, N. P., & Gleeson, M. (2011). Position statement part two: maintaining immune health. 17:64-103. ##Wang, J., & Liu, S. (2020). Exercise Regulates the Immune. 1228:395-408. doi:10.1007/978-981-15-1792-1_27##Wolach B., & Gavrieli R. (2005). Transient decrease of neutrophil chemotaxis following aerobic exercise. 37(6):949-54##Wong, C.-M., & Lai, H.-K. (2008). Is exercise protective against influenza-associated mortality? , 3(5):e2108. ##Yan, Z., & Spaulding, H. R. (2020). Extracellular superoxide dismutase, a molecular transducer of health benefits of exercise. 101508. 32:101508. ##Zhou, G., & Liu, H. (2018). Smoking, leisure-time exercise and frequency of self-reported common cold among the general population in northeastern China: a cross-sectional study. 27; 18(1):294. ##