اثر یک وهله تمرین مقاومتی بر بیان mRNA IL-15 در عضلات اسکلتی تند و کندتنش موش های صحرایی سالم و دیابتی تمرین کرده

نوع مقاله : مقاله پژوهشی

نویسندگان

1 تربیت مدرس

2 انستیتو پاستور تهران

3 دانشگاه تربیت مدرس

4 علوم پزشکی دانشگاه تربیت مدرس

چکیده

لیلا باقرصاد رنانی، مهدیه ملانوری شمسی، دکتر مهدی مهدوی، دکتر رضا قراخانلو ، دکتر زهیر محمد حسن
چکیده
سابقه وهدف: هدف از مطالعه ی حاضر بررسی اثر یک وهله تمرین مقاومتی بر بیان mRNA IL-15 در عضلات اسکلتی تند و کندتنش موش­های صحرایی سالم و دیابتی تمرین­کرده،است.
مواد و روش­ها: موش­های صحرایی بطور تصادفی به چهار گروه کنترل سالم (C)، تمرین­کرده سالم (T) ، کنترل دیابتی (D) و تمرین­کرده دیابتی (DT) تقسیم شدند. دیابت با استفاده از یک وهله تزریق STZ ایجادشد. گروه­های تمرین 16 جلسه تمرین مقاومتی را به صورت بالا بردن وزنه از یک نردبان، انجام دادند. 48ساعت پس از آخرین وهله تمرین ،گروه­های تمرین یک وهله تمرین مقاومتی رانیز انجام دادند و بلافاصله پس از آن تمامی گروه­ها کشته شدند. بیان mRNA IL-15 در عضله ی نعلی (SOL) و خم­کننده ی بلند شست (FHL) با تکنیک Real time–PCR اندازه­گیری شد.
یافته­ها: بیان mRNA IL-15 پس از یک وهله تمرین مقاومتی در عضله FHL موش­های صحرایی سالم و دیابتی تمرین­کرده تغییر معناداری را نشان نداد (0.05˃P) ، در حالی که این تغییر در عضله SOL معنادار بود (P˂0.05). بیان این سایتوکاین در عضله FHL در گروه­های C، T، D و DT به ترتیب 1، 0.8، 1.3 و 0.7 برابر و در عضله SOL به ترتیب 1، 0.6، 1.3 و 2.4 برابر تغییر یافت. بیشترین میزان بیان mRNA IL-15 در عضله SOL گروه DT مشاهده شد. 
نتیجه­گیری: با توجه به توانایی IL-15 در تثبیت پروتئین عضله اسکلتی در شرایط پاتولوژیک، به نظر می­رسد عضله اسکلتی به محرک آتروفیک (مانند بیماری دیابت، بویژه دیابت نوع I)، با افزایش سطوح IL-15 به عنوان یک مکانیسم محافظتی و جبرانی در برابر تخریب پروتئین، پاسخ می­دهد. 
 


 


 

کلیدواژه‌ها


##American Diabetes Assiociation. Management of dyslipidemia in adults with diabetes.(1998). Diabetes care; 21:160–178, PMID: 9538988.##Templeton E. (2007) Muscle Atrophy and Alternation of Metabolic Gene Experssion During Early Stereptosotocin Induced Diabetes. A thesis submited to Michigan University. ##ACSM, American College of Sports Medicine position stand, (2009). Progression models in resistance training for healthy adults. Sci Sports Exerc;  41:687-708, PMID: 19204579.##Grabstein K.H.Eisenman J.Shanebeck K., et al, (1994) Cloning of a T cell growth factor that interacts with the beta chain of the interleukin-2 receptor. Science; 264:965–968, PMID: 8178155.##Furmanczyk PS., Quinn LS. (2003). Interleukin-15 increases myosin accretion in human skeletal myogenic cultures. Cell Biol Int; 27:845–851, PMID: 14499665.##Busquets S., Figueras M. (2006). Almendro V., et al, IL-15 increases glucose uptake in skeletal muscle. An antidiabetogenic effect of the cytokine. Biochim. Biophys. Acta.; 1760:1613–1617, PMID: 17056184.##Nieman DC., Davis JM., Henson DA., et al. (2003). Carbohydrate ingestion influences skeletal muscle cytokine mRNA and plasma cytokine levels after a 3-h run. J Appl Physiol; 94: 1917–1925, PMID: 12533503.##Nieman DC, Davis JM, Brown VA, et al. (2004). Influence of carbohydrate ingestion on immune changes after 2 h of intensive resistance training. J Appl Physiol; 96: 1292–1298, PMID: 14672962.##Chan MH, Carey L, Watt M, et al. (2004). Cytokine gene expression in human skeletal muscle during concentric contraction: evidence that IL-8, like IL-6, is influenced by glycogen availability. Am J Physiol Regul Integr Comp Physiol; 287: R322–R327, PMID: 15072962.##Nielsen AR., Mounier R., Plomgaard P., et al. (2007). Expression of interleukin-15 in human skeletal muscle: effect of exercise and muscle fibre type composition. J Physiol; 584: 305–312, PMID: 17690139.##Louis E., Raue U., Yang Y. (2007). Time course of proteolytic, cytokine, and myostatin gene expression after acute exercise in human skeletal muscle; J Appl Physiol 103: 1744–1751, PMID: 17823296.##Christiansen T., Paulsen SK., Bruun JM., Pedersen SB., Richelsen B. (2010). Exercise training versus diet-induced weight loss on metabolic risk factors and inflammatory markers in obese subjects: 12-week randomized intervention study. Am J Physiol Endocrinol Metab; 298(4):E824-31. PMID:20086201   ##Zanchi NE., Lira FS., et al. (2010). Chronic low frequency/low volume resistance training reduces pro-inXammatory cytokine protein levels and TLR4 mRNA in rat skeletal muscle. Eur J Appl Physiol; 09:1095–1102, PMID: 20369365.##Kelleher A., Fairchild T., Keslacy S. (2010). STZ-induced skeletal muscle atrophy is associated with increased p65 content and downregulation of insulin pathway without NF-jB canonical cascade activation. Acta Diabetol;  315: 323-47, PMID: 20640583.##Bailey CJ., Puah JA. (1986). Effect of metformin on glucose metabolism in mouse soleus muscle, Diabete and Metabolisme, (Paris); 12: 212–218, PMID: 3770275.##Russell ST., Rajani S., Dhadda RS., et al. (2009). Mechanism of induction of muscle protein loss by hyperglycaemia. Exp Cell Res; 1;315(1):16-25, PMID: 18973755.##Phillips SM., Tipton KD., Ferrando AA., et al. (1999). Resistance training reduces the acute exercise-induced increase in muscle protein turnover. Am J Physiol; 276:E118- 24, PMID: 9886957.##Hornberger TA.Farrar RP. (2004). Physiological hypertrophy of the FHL muscle following  8 weeks  of progressive  resistance exercise in the rat. Can J Appl Physiol. ;29(1):16-31. PMID:15001801.## Lee S., Barton ER., Sweeney HL., Farrar RP. (2004). Viral expression of insulin-like growth factor-I enhances muscle hypertrophy in resistance-trained rats. J Appl Physiol. ;96(3):1097-104. PMID:14766764.##Bird SP., Tarpenning KM., Marino FE. (2005). Designing resistance training programmes to  enhance muscular fitness: a review of the acute programme variables. Sports Med.; 35 (10):841-51. PMID:16180944.##Klitgaard H. (1988). A model for quantitative strength training of hindlimb muscles of the rat. J Appl Physiol. ; 64(4):1740-5. PMID:3379005.##Quinn LS. (2007). Interleukin-15: A muscle-derived cytokine regulating fat-to-lean body composition. J Anim Sci; 86(E. Suppl.):E75–E83, PMID: 17709786.##Pistilli E., Siu P., Alway S. (2007). Interleukin-15 responses to aging and unloading-induced skeletal muscle atrophy. Am. J. Physiol. Cell Physiol; 292:C1298–C1304, PMID: 17135303.##