مروری بر تأثیر تعاملات ژنتیکی و اپی‌ژنتیکی در تنظیم متابولیسم و تعیین نیازهای تغذیه‌ای ورزشکاران نخبه: مکانیسم‌های مولکولی و پیامدهای عملکردی

نوع مقاله : مقاله مروری

نویسندگان

1 استاد گروه فیزیولوژی ورزشی، دانشکده علوم تربیتی و روانشناسی، دانشگاه محقق اردبیلی، اردبیل، ایران

2 دانشجوی دکتری گروه زیست شناسی، دانشکده علوم پایه، دانشگاه محقق اردبیلی، اردبیل، ایران

3 دانشجوی کارشناسی ارشد گروه فیزیولوژی ورزشی، دانشکده علوم تربیتی و روانشناسی، دانشگاه محقق اردبیلی، اردبیل، ایران

4 دانشجوی دکتری گروه فیزیولوژی ورزشی، دانشکده علوم تربیتی و روانشناسی، دانشگاه محقق اردبیلی، اردبیل، ایران

10.22080/jaep.2025.29449.2225

چکیده

اهداف: عملکرد ورزشی نخبه حاصل تعامل پیچیده بین ژنتیک، اپی‌ژنتیک و تغذیه است. ژن‌ها مسیرهای متابولیکی را کنترل می‌کنند و عوامل اپی‌ژنتیکی مانند متیلاسیون DNA و miRNAها، تحت تأثیر سبک زندگی، بر بیان ژن‌ها اثر می‌گذارند. این مطالعه با هدف مرور شواهد علمی مرتبط با نقش این تعاملات در تنظیم متابولیسم و تعیین نیازهای تغذیه‌ای ورزشکاران نخبه، جهت زمینه‌سازی طراحی برنامه‌های تغذیه‌ای و تمرینی شخصی‌سازی‌شده انجام شد.
روش مطالعه: این پژوهش به‌صورت مرور سیستماتیک انجام شد. مقالات فارسی و انگلیسی منتشرشده بین سال‌های ۲۰۲۲ تا ۲۰۲۵ با استفاده از کلیدواژه‌های مرتبط با ژنتیک، اپی‌ژنتیک و تغذیه ورزشی در پایگاه‌های PubMed، Scopus، Web of Science و Google Scholar  جست‌وجو شدند. پس از غربالگری و ارزیابی کیفیت با پرسشنامه دان‌وبلک، ۱۴ مقاله برای تحلیل نهایی انتخاب شد.
یافته ­ها: نتایج نشان دادند که پلی‌مورفیسم‌های ژنی، متیلاسیون DNA و miRNAها نقش کلیدی در تنظیم متابولیسم، پاسخ تغذیه‌ای و عملکرد ورزشی دارند. ترکیب رژیم غذایی با ورزش می‌تواند مسیرهای اپی‌ژنتیکی را تعدیل کرده و سلامت متابولیک را بهبود بخشد. شواهدی از اثربخشی رژیم‌های شخصی‌سازی‌شده بر اساس ژنتیک فرد در ارتقاء عملکرد و پیشگیری از اختلالات متابولیکی به‌دست آمد. نقش میکروبیوتای روده، مکمل‌های هدفمند و miRNAها در طراحی مداخلات شخصی نیز برجسته بود.
نتیجه گیری: استفاده از داده‌های ژنتیکی و اپی‌ژنتیکی، راهی نوین برای تدوین برنامه‌های دقیق، شخصی‌سازی‌شده و مبتنی بر شواهد در تغذیه ورزشی فراهم می‌کند.
 

کلیدواژه‌ها


عنوان مقاله [English]

A Review of the Impact of Genetic and Epigenetic Interactions on Metabolic Regulation and the Nutritional Requirements of Elite Athletes: Molecular Mechanisms and Performance Implications

نویسندگان [English]

  • Marefat Siahkouhian 1
  • Narges Yazdan nasab 2
  • Seyedeh Zeinab Parandak 3
  • Zahra Hormati Oughoulbaig 3
  • Amir Hossein Hormati Oughoulbaig 4
1 Department of Exercise Physiology, Faculty of Educational Sciences and Psychology, Mohaghegh Ardabili University, Ardabil, Iran.
2 Department of Biology, Faculty of Basic Sciences, Mohaghegh Ardabili University, Ardabil, Iran.
3 Department of Exercise Physiology, Faculty of Educational Sciences and Psychology, Mohaghegh Ardabili University, Ardabil, Iran.
4 Department of Exercise Physiology, Faculty of Educational Sciences and Psychology, Mohaghegh Ardabili University, Ardabil, Iran.
چکیده [English]

Objectives: Elite athletic performance results from a complex interaction between genetics, epigenetics, and nutrition. Genes regulate metabolic pathways, while epigenetic factors such as DNA methylation and miRNAs, influenced by lifestyle, affect gene expression. This study aimed to review the scientific evidence related to the role of these interactions in metabolic regulation and to determine the nutritional needs of elite athletes, thereby paving the way for designing personalized nutrition and training programs.
Methods: This research was conducted as a systematic review. Articles published in Persian and English between 2022 and 2025 were searched using keywords related to genetics, epigenetics, and sports nutrition in the PubMed, Scopus, Web of Science, and Google Scholar databases. After screening and quality assessment using the Downs and Black checklist, 14 articles were selected for the final analysis.
Results: The results showed that gene polymorphisms, DNA methylation, and miRNAs play key roles in regulating metabolism, nutritional responses, and athletic performance. The combination of diet and exercise can modulate epigenetic pathways and improve metabolic health. Evidence supports the effectiveness of personalized diets based on individual genetics in enhancing performance and preventing metabolic disorders. The roles of gut microbiota, targeted supplements, and miRNAs in designing personalized interventions were also highlighted.
Conclusion: Utilizing genetic and epigenetic data provides a novel approach to developing precise, personalized, and evidence-based programs in sports nutrition.
 

کلیدواژه‌ها [English]

  • Epigenetics
  • Metabolic Regulation
  • Elite Athletes’ Performance
  • Nutrigenomics
  • Sports Nutrition
##Abdelaziz, N., Therachiyil, L., Sadida, H. Q., Ali, A. M., Khan, O. S., Singh, M., Khan, A. Q., Al-Shabeeb Akil, A. S., Bhat, A. A., & Uddin, S. (2023). Epigenetic inhibitors and their role in cancer therapy. International Review of Cell and Molecular Biology, 380, 211–251. ##Abraham, M. J., El Sherbini, A., El-Diasty, M., Askari, S., & Szewczuk, M. R. (2023). Restoring epigenetic reprogramming with diet and exercise to improve health-related metabolic diseases. Biomolecules, 13, 318. ##Adithya, S. P., Balagangadharan, K., & Selvamurugan, N. (2022). Epigenetic modifications of histones during osteoblast differentiation. Biochimica et Biophysica Acta—Gene Regulatory Mechanisms, 1865, 194780. ##Ahmetov, I. I., Mozhayskaya, I. A., Flavell, D. M., Astratenkova, I. V., Komkova, A. I., Lyubaeva, E. V., Tarakin, P. P., Shenkman, B. S., Vdovina, A. B., & Netreba, A. I. (2006). PPARα gene variation and physical performance in Russian athletes. European Journal of Applied Physiology, 97, 80–103. ##Barati, S., Fabrizio, C., Strafella, C., Cascella, R., Caputo, V., Megalizzi, D., Peconi, C., Mela, J., Colantoni, L., Caltagirone, C., Termine, A., & Giardina, E. (2022). Relationship between nutrition, lifestyle, and neurodegenerative disease: Lessons from ADH1B, CYP1A2 and MTHFR. Genes, 13. ##Barres, R., Yan, J., Egan, B., Treebak, J. T., Rasmussen, M., Fritz, T., Caidahl, K., Krook, A., O’Gorman, D. J., & Zierath, J. R. (2012). Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metabolism, 15, 405–411. ##Dayeh, T. A., Olsson, A. H., Volkov, P., Almgren, P., Rönn, T., & Ling, C. (2013). Identification of CpG-SNPs associated with type 2 diabetes and differential DNA methylation in human pancreatic islets. Diabetologia, 56, 1036–1046. ##Downs, S. H., & Black, N. (1998). The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. Journal of Epidemiology & Community Health, 52, 377–384. ##Ginevičienė, V., Utkus, A., Pranckevičienė, E., Semenova, E. A., Hall, E. C. R., & Ahmetov, I. I. (2022). Perspectives in sports genomics. Biomedicines, 10, 298. ##Gkiouleka, M., Karalexi, M., Sergentanis, T. N., Nouvakis, D., Proikaki, S., Kornarou, E., & Vassilakou, T. (2025). The epigenetic role of nutrition among children and adolescents: A systematic literature review. Children, 12, 143. ##Gomez de Cedron, M., & Ramírez de Molina, A. (2023). Metabolo-epigenetic interplay provides targeted nutritional interventions in chronic diseases and ageing. Frontiers in Oncology, 13, 1169168. ##Holzapfel, C., Waldenberger, M., Lorkowski, S., Daniel, H., & Working Group “Personalized Nutrition” of the German Nutrition Society. (2022). Genetics and epigenetics in personalized nutrition: Evidence, expectations, and experiences. Molecular Nutrition & Food Research, 66, 2200077. ##Huang, Z., Yao, Q., Ma, S., Zhou, J., Wang, X., Meng, Q., Liu, Y., Yu, Z., & Chen, X. (2025). The synergistic role of gut microbiota and RNA in metabolic diseases: Mechanisms and therapeutic insights. Frontiers in Microbiology, 16, 1504395. ##Ishikawa, V. N., Gontijo, G. M., Ichikawa, A. I. T., Bubna, P., da Silva Conter, F., de Queiroz, A. C. M., et al. (2023). Major metabolic and metabolomic aspects of nutrition in the gut microbiota and sports performance: A systematic review. International Journal of Nutrology, 16(2). ##Karlic, H., Krammer, U., & Haslberger, A. (2022). Nutritional supplements for athletes and personalization: A short review. Functional Food Science, 2, 224–241. ##Kawaf, R. R., Ramadan, W. S., & El-Awady, R. (2024). Deciphering the interplay of histone post-translational modifications in cancer: Co-targeting histone modulators for precision therapy. Life Sciences, 346, 122639. ##Krammer, U. D. B., Tschida, S., Berner, J., Lilja, S., Switzeny, O. J., Hippe, B., Rust, P., & Haslberger, A. G. (2022). MiRNA-based “fitness score” to assess the individual response to diet, metabolism, and exercise. Journal of the International Society of Sports Nutrition, 19, 455–473. ##Kumar, M., & Rani, K. (2023). Epigenomics in stress tolerance of plants under climate change. Molecular Biology Reports, 50, 6201–6216. ##Li, X., & Qi, L. (2019). Gene–environment interactions on body fat distribution. International Journal of Molecular Sciences, 20(1), Article 20. ##Li, X., & Qi, L. (2022). Epigenetics in precision nutrition. Journal of Personalized Medicine, 12, 533. ##Ling, C., Poulsen, P., Simonsson, S., Rönn, T., Holmkvist, J., Almgren, P., Hagert, P., Nilsson, E., Mabey, A. G., & Nilsson, P. (2007). Genetic and epigenetic factors are associated with expression of respiratory chain component NDUFB6 in human skeletal muscle. The Journal of Clinical Investigation, 117, 3427–3435. ##Maciejewska-Skrendo, A., Massidda, M., Tocco, F., & Leźnicka, K. (2022). The influence of the differentiation of genes encoding peroxisome proliferator-activated receptors and their coactivators on nutrient and energy metabolism. Nutrients, 14, 5378. ##Missong, H., Joshi, R., Khullar, N., Thareja, S., Navik, U., Bhatti, G. K., & Bhatti, J. S. (2024). Nutrient–epigenome interactions: Implications for personalized nutrition against aging-associated diseases. Journal of Nutritional Biochemistry, 127, 109592. ##Mujika, I., Sharma, A. P., & Stellingwerff, T. (2019). Contemporary periodization of altitude training for elite endurance athletes: A narrative review. Sports Medicine, 49, 1651–1669. ##Munteanu, C., Onose, G., Postaru, M., Turnea, M., Rotariu, M., & Galaction, A. I. (2024). Hydrogen sulfide and gut microbiota: Their synergistic role in modulating sirtuin activity and potential therapeutic implications for neurodegenerative diseases. Pharmaceuticals, 17. ##Ramos-Lopez, O., Martinez-Urbistondo, D., Vargas-Nunez, J. A., & Martinez, J. A. (2022). The role of nutrition on meta-inflammation: Insights and potential targets in communicable and chronic disease management. Current Obesity Reports, 11, 305–335. ##Ramos-Lopez, O., Riezu-Boj, J. I., & Milagro, F. I. (2022). Genetic and epigenetic nutritional interactions influencing obesity risk and adiposity outcomes. Current Opinion in Clinical Nutrition & Metabolic Care, 25, 235–240. ##Roberts, F. L., & Markby, G. R. (2021). New insights into molecular mechanisms mediating adaptation to exercise: A review focusing on mitochondrial biogenesis, mitochondrial function, mitophagy, and autophagy. Cells, 10. ##Rönn, T., Volkov, P., Davegårdh, C., Dayeh, T., Hall, E., Olsson, A. H., Nilsson, E., Tornberg, Å., Dekker Nitert, M., & Eriksson, K.-F. (2013). A six-month exercise intervention influences the genome-wide DNA methylation pattern in human adipose tissue. PLoS Genetics, 9, e1003572. ##Rousseau, A.-S. (2022). Nutrition, santé et performance du sportif d’endurance. Cahiers de Nutrition et de Diététique, 57, 78–94. ##San-Millan, I., Stefanoni, D., Martinez, J. L., Hansen, K. C., D’Alessandro, A., & Nemkov, T. (2020). Metabolomics of endurance capacity in World Tour professional cyclists. Frontiers in Physiology, 11, 578. ##Silva, H. H., Silva, M. G., Cerqueira, F., Tavares, V., & Medeiros, R. (2022). Genomic profile in association with sport-type, sex, ethnicity, psychological traits and sport injuries of elite athletes. Journal of Sports Medicine and Physical Fitness, 62, 418–434. ##Suleman, S., Niaz, A. Q., Akram, M. N., Hadi, B., Usman, M., Sajjad, M., Waseem, M., Rajjab, A., & Muqarrab, R. M. (2024). The role of nutrigenomics in sports performance: A quantitative overview of gene–diet interactions. Journal of Health and Rehabilitation Research, 4, 1713–1718. ##Szczechla, M., Balewska, A., Naskret, D., Zozulinska-Ziolkiewicz, D., & Uruska, A. (2023). Molecular changes in cells of patients with type 2 diabetes mellitus depending on changes in glycemia level in the context of lifestyle: An overview of the latest scientific discoveries. Current Issues in Molecular Biology, 45, 1961–1981. ##Xu, B., Ye, X., Wen, Z., Chen, S., & Wang, J. (2024). Epigenetic regulation of megakaryopoiesis and platelet formation. Haematologica, 109, 3125–3137. ##Xu, N., Liu, J., & Li, X. (2022). Lupus nephritis: The regulatory interplay between epigenetic and microRNAs. Frontiers in Physiology, 13, 925416. ##Zannas, A. S., Arloth, J., Carrillo-Roa, T., Iurato, S., Röh, S., Ressler, K. J., Nemeroff, C. B., Smith, A. K., Bradley, B., & Heim, C. (2015). Lifetime stress accelerates epigenetic aging in an urban African American cohort: Relevance of glucocorticoid signaling. Genome Biology, 16, 1–12. ##Zentgraf, K., Musculus, L., Reichert, L., Will, L., Roffler, A., Hacker, S., Hilpisch, C., Wiedenbrüg, K., Cermak, N., Lenz, C., de Haan, H., Mutz, M., Wiese, L., Al-Ghezi, A., Raab, M., & Kruger, K. (2024). Advocating individual-based profiles of elite athletes to capture the multifactorial nature of elite sports performance. Scientific Reports, 14, 26351. ##