اثر 12 هفته تمرین شنا بر تغییرات آنتی اکسیدانی بافت ریه در یک مدل بنزوپرینی سرطان ریه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم ورزشی، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران

2 گروه علوم ورزشی، واحد مرودشت، دانشگاه آزاد اسلامی، مرودشت، ایران

10.22080/jaep.2025.29680.2228

چکیده

اهداف: سرطان ریه با کاهش عملکرد آنتی اکسیدانی در سلول⁠های ریه ارتباط دارد. اگرچه مشخص شده است که تمرینات ورزشی موجب افزایش کارآیی دفاع آنتی اکسیدانی بدن می⁠شود، اما اثر تمرین شنا بر آنزیم⁠های آنتی اکسیدانی بافت ریه در نمونه⁠های مبتلا به سرطان ریه به خوبی شناخته نشده است. لذا هدف مطالعه حاضر بررسی اثر 12 هفته تمرین شنای فزاینده بر تغییرات آنتی اکسیدانی بافت ریه در یک مدل بنزوپرینی سرطان ریه بود.
روش مطالعه: در این مطالعه تجربی، تعداد 12 سر موش نر نژاد Balb/c با سن 8 تا 10 هفته، وزن 18-22 گرم (مبتلا شده به سرطان ریه با تزریق mg/kg 100 بنزوپرین) به گروه⁠های کنترل بیمار و تمرین شنا تقسیم شدند. همچنین تعداد 6 سر موش نیز به عنوان گروه کنترل سالم در نظر گرفته شدند. موش⁠های گروه تمرین به مدت 12 هفته، سه جلسه در هفته و هر جلسه 5-38 دقیقه تمرین شنا را با 2 تا 5 درصد وزن بدنشان انجام دادند. 48 ساعت پس از آخرین جلسه تمرین، از بافت ریه برای اندازه⁠گیری غلظت آنزیم⁠های سوپراکسید دیسموتاز (SOD)، گلوتاتیون پراکسیداز (GPX) و گلوتاتین (GSH) استفاده شد. نتایج با استفاده از آزمون آنالیز واریانس یک راهه همراه با آزمون تعقیبی توکی در نرم افزار SPSS نسخه 22 و سطح معنی داری 05/0 تجزیه و تحلیل شدند.
یافته ­ها: مقادیر SOD، GPX و GSH در گروه کنترل بیمار و گروه تمرین شنا به طور معنی⁠داری کمتر از گروه کنترل سالم بود (001/0=P). اگرچه مقدار GSH در گروه تمرین شنا به طور معنی⁠داری بیشتر از گروه کنترل بیمار بود (026/0=P) اما تفاوت معنی⁠داری در مقادیر GPX و SOD بین گروه کنترل بیمار و گروه تمرین شنا مشاهده نشد.
نتیجه گیری: با توجه به نتایج به دست آمده به نظر می⁠رسد تمرین شنا اثرات مختلفی بر آنزیم⁠های آنتی اکسیدانی بافت ریه در نمونه⁠های مبتلا به سرطان ریه دارد. با توجه به محدودیت اطلاعات، انجام مطالعات بیشتر در این زمینه ضروری است.

کلیدواژه‌ها


عنوان مقاله [English]

The Effect of 12 Weeks of Swimming Training on Lung Tissue Antioxidant Changes in A Benzopyrene Model of Lung Cancer

نویسندگان [English]

  • Hediyeh Bahreman 1
  • Mehrzad Moghadasi 1
  • Seyed Ali Hosseini 2
1 Department of Exercise Physiology, Sh.C., Islamic Azad University, Shiraz, Iran
2 Department of Exercise Physiology, Marv.C, Islamic Azad University, Marvdasht, Iran
چکیده [English]

Objectives: Lung cancer is related to the reduction of antioxidant function in lung cells. Although it is known that exercise increases the efficiency of the body's antioxidant defense, the effect of swimming training on lung tissue antioxidant enzymes in samples with lung cancer is not well known. Therefore, the aim of the present study was to investigate the effect of 12 weeks of swimming training on lung tissue antioxidant changes in a benzopyrene (BZP) model of lung cancer
Methods: In this experimental study, 12 BALB/c male mice aged 8-10 weeks, weighing 18-22 grams (infected with lung cancer by injection of 100 mg/kg BZP) were divided into lung cancer (LC) and swimming training (ST) groups. Also, 6 mice were considered as healthy control (HC) group. Mice in the training group performed swimming exercises with 2-5% of their body weight for 12 weeks, three sessions a week and each session was 5-38 minutes. 48 hours after the last training session, the lung tissue was used to measure the concentration of superoxide dismutase (SOD), glutathione peroxidase (GPX) and glutathione (GSH) enzymes. The results were analyzed using one-way analysis of variance with Tukey's post hoc test in SPSS software version 22 and a significance level of 0.05.
Results: The levels of SOD, GPX and GSH in the LC and ST groups were significantly lower than the HC group (P = 0.001). Although the amount of GSH in the ST group was significantly higher than the LC group (P = 0.026), no significant difference was observed in the GPX and SOD levels between the LC and ST groups.
Conclusion: According to the study results, it seems that swimming exercise has different effects on lung tissue antioxidant enzymes in samples with lung cancer. Due to the limited information, it is necessary to conduct more studies in this field.

کلیدواژه‌ها [English]

  • Swimming Training
  • Antioxidant Enzymes
  • Lung Cancer
  • Benzopyrene
 
##Abekova, A., Islamov, R. (2024). ChemoProtective effects of new iodine coordinated compound in benzo [a] pyrene-induced lung cancer in BALB/c mice. In BIO Web of Conferences, 100: 03001.‏ ##Alves, C.R., das Neves, W., de Almeida, N.R., Eichelberger, E.J., Jannig, P.R., Voltarelli, V.A., et al. (2020). Exercise training reverses cancer-induced oxidative stress and decrease in muscle COPS2/TRIP15/ALIEN. Molecular Metabolism, 39: 101012.‏ ##Ariyanasab, R., Askari, V.R., Askari, R., Rahimi, V.B., Hejazi, K., Asadi, M. (2024). The interactive effect of seven weeks aerobic exercise training and piperine against paraquat-induced lung damage in male Wistar rats: Investigating role of oxidative and inflammatory indices. Heliyon, 10(12).: e33241. ##Chandrashekar, N. (2022). Benzo (a) Pyrene-Induced oxidative stress during lung cancer and treatment with baicalein. In handbook of oxidative stress in cancer: Mechanistic Aspects, 2022,787-804.‏ ##Ghadiri Soufi, F., Aslanabadi, N., Ahmadiasl, N. (2011). The Influence of Regular Exercise on the Glutathione Cycle Components: Antioxidant Defense Improvement Against Oxidative Stress. Internal Medicine Today, 16(4), 12-19.‏ ##Granger, C., Cavalheri, V. (2022). Preoperative exercise training for people with non‐small cell lung cancer. Cochrane Database of Systematic Reviews, 2022(9), CD012020. ##Guedes, L.J.L., Tavares, VB., Carneiro, S.R., Neves, L.M.T. (2025). The effect of physical activity on markers of oxidative and antioxidant stress in cancer patients: a systematic review and meta-analysis. BMC Cancer, 25(1), 74.‏ ##Hu, X., Geetha, R.V., Surapaneni, K.M., Veeraraghavan, V.P., Chinnathambi, A., Alahmadi, T.A., et al. (2021). Lung cancer induced by Benzo (A) Pyrene: ChemoProtective effect of sinapic acid in swiss albino mice. Saudi Journal of Biological Sciences, 28(12), 7125-7133.‏ ##Jones, L.W., Eves, N.D., Spasojevic, I., Wang, F., Il’yasova, D. (2011). Effects of aerobic training on oxidative status in postsurgical non-small cell lung cancer patients: a pilot study. Lung Cancer, 72(1), 45-51.‏ ##Kesmati, M., Pouratar, F., Hoveizi, E. (2020). The Effect of Zinc Oxide Nanoparticles on Oxidative Stress in A549 Human Non-small Lung Cancer Cells. Journal of Animal Research (Iranian Journal of Biology), 33(3), 222-232.‏ ##Kumar, A., Sinha, N., Kodidela, S., Zhou, L., Singh, U.P., Kumar, S. (2022). Effect of benzo (a) pyrene on oxidative stress and inflammatory mediators in astrocytes and HIV-infected macrophages. Plos one, 17(10), e0275874.‏ ##Longobucco, Y., Masini, A., Marini, S., Barone, G., Fimognari, C., Bragonzoni, L., et al. (2022). Exercise and oxidative stress biomarkers among adult with cancer: a systematic review. Oxidative Medicine and Cellular Longevity, 022(1), 2097318. ##‏Luo, Z., Wan, R., Liu, S., Feng, X., Peng, Z., Wang, Q., et al. (2023). Mechanisms of exercise in the treatment of lung cancer–a mini-review. Frontiers in Immunology, 14: 1244764.‏ ##Mirdar Harijani, S., Musavi, N. (2020). The effect of 12 weeks of submaximal swimming training on immunoreactivity of Ras and Raf-1 in lung epithelial cells of Wistar rats exposed to carcinogen NN. Research in Sport Medicine and Technology, 18(19), 113-126.‏ ##Mousapasandi, A., Loke, W.S.J., Herbert, C.A., Thomas, P. (2021). Oxidative stress in lung cancer. In Book: Cancer, 2021, 27-37. ‏##Nakao, C., Ookawara, T., Kizaki, T., Oh-Ishi, S., Miyazaki, H., Haga, S., et al. (2000). Effects of swimming training on three superoxide dismutase isoenzymes in mouse tissues. Journal of Applied Physiology, 88(2), 649-654.‏ ##Nissim, M., Rottenberg, Y., Karniel, N., Ratzon, N.Z. (2024). Effects of aquatic exercise program versus on-land exercise program on cancer-related fatigue, neuropathy, activity and participation, quality of life, and return to work for cancer patients: study protocol for a randomized controlled trial. BMC Complementary Medicine and Therapies, 24(1), 74.‏ ##Pira, M., Jalali-Dehkordi, K., Taghian, F., Nasiri, R. (2021). The Effect of Eight Weeks of Aerobic Exercise and Ferulic Acid Supplementation on the Oxidative Stress Indices of the Experimental Model of Breast Cancer in Mice. Journal of Research in Rehabilitation Sciences, 17(1), 126-133.‏ ##Smolarz, B., Łukasiewicz, H., Samulak, D., Piekarska, E., Kołaciński, R., Romanowicz, H. (2025). Lung Cancer-Epidemiology, Pathogenesis, Treatment and Molecular Aspect (Review of Literature). International Journal of Molecular Sciences, 26(5), 2049.‏ ##Tang, J., Zhang, Z., Miao, J., Tian, Y., Pan, L. (2022). Effects of benzo [a] pyrene exposure on oxidative stress and apoptosis of gill cells of Chlamys farreri in vitro. Environmental Toxicology and Pharmacology, 93, 103867.‏ ##Tomin, T., Honeder, S.E., Liesinger, L., Gremel, D., Retzl, B., Lindenmann, J., et al. (2025). Increased antioxidative defense and reduced advanced glycation end-product formation by metabolic adaptation in non-small-cell-lung-cancer patients. Nature Communications, 16(1), 1-16.‏ ##Wang, R., Feng, S., Jiang, J., Chang, Y., Zong, Y., Guo, J. (2025). Emerging trends and hotspots in chronic obstructive pulmonary disease and oxidative stress: a bibliometric and visualized analysis from 2010 to 2024. Journal of Thoracic Disease, 17(3), 1228. ##Zhou, N., Ripley-Gonzalez, J.W., Zhang, W., Xie, K., You, B., Shen, Y., et al. (2025). Preoperative exercise training decreases complications of minimally invasive lung cancer surgery: a randomized controlled trial. The Journal of Thoracic and Cardiovascular Surgery, 169(2), 516-528.‏ ##