تاثیر تمرین هوازی بر بیان ژن‌های دخیل در آدیپوژنز بافت چربی موش‌های تغذیه شده با رژیم غذایی پرچرب

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری فیزیولوژی ورزش، دانشگاه آزاد اسلامی، واحد اهواز، اهواز، ایران.

2 استادیار گروه تربیت بدنی، دانشگاه آزاد اسلامی، واحد اهواز، اهواز، ایران.

10.22080/jaep.2025.27967.2207

چکیده

اهداف: آدیپوژنز، تبدیل سلول­های پیش ساز چربی به سلول­های بالغ چربی است که منجر به انباشت چربی و درنتیجه اضافه وزن و چاقی می­شود. از این رو هدف از تحقیق حاضر بررسی تاثیر هشت هفته تمرین هوازی متعاقب دوازده هفته رژیم غذایی پرچرب بر میزان بیان ژن­هایREBC, KLF4 و PPARγ در بافت چربی احشایی موش­های نر نژاد ویستار بود.
روش مطالعه: بیست و هشت سر موش صحرایی نر نژاد ویستار با سن هشت هفته و وزن اولیه 20± 220 گرم به طور تصادفی در دو گروه رژیم غذایی استاندارد (7=n) و رژیم غذایی پرچرب (21=n) تقسیم شدند. پس از 12هفته رژیم غذایی پر چرب و حصول اطمینان از ایجاد چاقی توسط ارزیابی شاخص­های ترکیب بدنی، موش­های تعذیه شده با رژیم پرچرب به صورت تصادفی به سه گروه کنترل+رژیم پرچرب، تمرین هوازی+رژیم پرچرب و تمرین هوازی+رژیم استاندارد تقسیم شدند. برنامه تمرین هوازی به مدت هشت هفته و هر هفته پنج جلسه براساس اصل اضافه بار تدریجی انجام شد. 48 ساعت پس از آخرین جلسه تمرینی بیان ژن­های REBC, KLF4 و PPARγ به روش Real-time PCR در بافت چربی احشایی اندازه­گیری شد. برای تجزیه و تحلیل آماری داده­ها از آزمون تحلیل واریانس یک راهه با آزمون تعقیبی توکی در سطح معنی داری 05/0>P استفاده شد.
یافته ­ها: نتایج نشان داد که بیان ژن­های REBC, KLF4 و PPARγ در گروه کنترل+ رژیم پرچرب نسبت به گروه کنترل+رژیم استاندارد بطور معنی داری بالاتر بود (05/0 >P). با این حال، در گروه های تمرین هوازی + رژیم پرچرب و تمرین هوازی +رژیم استاندارد به نسبت گروه کنترل+رژیم پرچرب میزان بیان ژن های فوق کاهش معنی داری یافته بود (05/0>P)
نتیجه گیری: نتایج نشان داد ­ تمرین هوازی با کاهش میزان بیان ژن های تحریک کننده آدیپوژنز از انباشت چربی در بدن و درنتیجه از بروز چاقی و بیماری های مرتبط با آن جلوگیری می­ کند.

کلیدواژه‌ها


عنوان مقاله [English]

The Effect of Aerobic Training on the Expression of Genes Involved in Adipogenesis in Adipose Tissue of Rat Fed with High-Fat Diet

نویسندگان [English]

  • Zhila Vatankhah 1
  • Mehdi Bostani 2
1 Department of Physical Education, Islamic Azad University, Ahvaz Branch, Ahvaz, Iran.
2 Department of Physical Education, Islamic Azad University, Ahvaz Branch, Ahvaz, Iran.
چکیده [English]

Objectives: Adipogenesis is the conversion of fat precursor cells into mature fat cells, which leads to fat accumulation and, as a result, weight gain and obesity. Therefore, the aim of the present study was to investigate the effect of eight weeks of aerobic training followed by twelve weeks of high-fat diet on the expression of REBC, KLF4, and PPARγ genes in visceral adipose tissue of male Wistar rats.
Methods: Twenty-eight male Wistar rats, eight weeks old and weighing 220 ± 20 g, were randomly divided into two groups: standard diet (n = 7) and high-fat diet (n = 21). After 12 weeks of high-fat diet and ensuring the development of obesity by assessing body composition indices, rats fed the high-fat diet were randomly divided into three groups: control + high-fat diet, aerobic training + high-fat diet, and aerobic training + standard diet. The aerobic training program was performed for eight weeks, five sessions per week, based on the principle of progressive overload. 48 hours after the last training session, the expression of REBC, KLF4, and PPARγ genes was measured in visceral adipose tissue by Real-time PCR. One-way analysis of variance with Tukey's post hoc test was used for statistical analysis of data at a significance level of P < 0.05.
Results: The results showed that the expression of REBC, KLF4 and PPARγ genes was significantly higher in the control + high-fat diet group than in the control + standard diet group (P < 0.05). However, in the aerobic training + high-fat diet and aerobic training + standard diet groups, the expression of the genes was significantly reduced compared to the control + high-fat diet group (P < 0.05).
Conclusion: The results showed that ‌ Aerobic training prevents fat accumulation in the body and, consequently, the occurrence of obesity and related diseases by reducing the expression of adipogenesis-stimulating genes.

کلیدواژه‌ها [English]

  • Aerobic Training
  • Adipogenesis
  • Obesity
  • Rats
##A McGregor, R., & S Choi, M. (2011). Micrornas in the regulation of adipogenesis and obesity. Current molecular medicine, 11(4), 304-316. ##Ahmadian, M., Suh, J. M., Hah, N., Liddle, C., Atkins, A. R., Downes, M., & Evans, R. M. (2013). Pparγ signaling and metabolism: The good, the bad and the future. Nature medicine, 19(5), 557-566. ##Ambele, M. A., Dhanraj, P., Giles, R., & Pepper, M. S. (2020). Adipogenesis: A complex interplay of multiple molecular determinants and pathways. International journal of molecular sciences, 21(12), 4283. ##Bahmad, H. F., Daouk, R., Azar, J., Sapudom, J., Teo, J. C., Abou-Kheir, W., & Al-Sayegh, M. (2020). Modeling adipogenesis: Current and future perspective. Cells, 9(10), 2326. ##Bilal, M., Nawaz, A., Kado, T., Aslam, M. R., Igarashi, Y., Nishimura, A., . . . Miwa, H. (2021). Fate of adipocyte progenitors during adipogenesis in mice fed a high-fat diet. Molecular metabolism, 54, 101328. ##Birsoy, K., Chen, Z., & Friedman, J. (2008). Transcriptional regulation of adipogenesis by klf4. Cell metabolism, 7(4), 339-347. ##de Moura e Dias, M., Dos Reis, S. A., da Conceição, L. L., Sediyama, C. M. N. d. O., Pereira, S. S., de Oliveira, L. L., . . . Milagro, F. I. (2021). Diet-induced obesity in animal models: Points to consider and influence on metabolic markers. Diabetology & Metabolic Syndrome, 13, 1-14. ##Demeulemeester, F., de Punder, K., van Heijningen, M., & van Doesburg, F. (2021). Obesity as a risk factor for severe covid-19 and complications: A review. Cells, 10(4), 933. ##Estadella, D., Oyama, L. M., Dâmaso, A. R., Ribeiro, E. B., & Do Nascimento, C. M. O. (2004). Effect of palatable hyperlipidic diet on lipid metabolism of sedentary and exercised rats. Nutrition, 20(2), 218-224. ##Finer, N. (2015). Medical consequences of obesity. Medicine, 43(2), 88-93##. Friedewald, W. T., Levy, R. I., & Fredrickson, D. S. (1972). Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clinical chemistry, 18(6), 499-502. ##Ghorbani, M. (2015). A review of type 2 diabetes and obesity. New Cellular and Molecular Biotechnology Journal, 5(18), 9-14. ##He, C., Cheng, D., Peng, C., Li, Y., Zhu, Y., & Lu, N. (2018). High-fat diet induces dysbiosis of gastric microbiota prior to gut microbiota in association with metabolic disorders in mice. Frontiers in microbiology, 9, 639. ##Hruby, A., & Hu, F. B. (2015). The epidemiology of obesity: A big picture. Pharmacoeconomics, 33, 673-689. ##Kandel, E. R. (2012). The molecular biology of memory: Camp, pka, cre, creb-1, creb-2, and cpeb. Molecular brain, 5, 1-12. ##Kawanishi, N., Mizokami, T., Yada, K., & Suzuki, K. (2018). Exercise training suppresses scavenger receptor cd36 expression in kupffer cells of nonalcoholic steatohepatitis model mice. Physiological Reports, 6(23), e13902. ##Moseti, D., Regassa, A., & Kim, W.-K. (2016). Molecular regulation of adipogenesis and potential anti-adipogenic bioactive molecules. International journal of molecular sciences, 17(1), 124. ##Musri, M. M., Gomis, R., & Parrizas, M. (2007). Chromatin and chromatin-modifying proteins in adipogenesis. Biochemistry and cell biology, 85(4), 397-410. ##Ogasawara, J., Nomura, S., Rahman, N., Sakurai, T., Kizaki, T., Izawa, T., . . . Ohno, H. (2010). Hormone-sensitive lipase is critical mediators of acute exercise-induced regulation of lipolysis in rat adipocytes. Biochemical and biophysical research communications, 400(1), 134-139. ##Ogasawara, J., Sakurai, T., Kizaki, T., Ishibashi, Y., Izawa, T., Sumitani, Y., . . . Ohno, H. (2012). Higher levels of atgl are associated with exercise-induced enhancement of lipolysis in rat epididymal adipocytes. PloS one, 7(7), e40876. ##Pauli, L. S. S., Ropelle, E. C. C., de Souza, C. T., Cintra, D. E., da Silva, A. S. R., de Almeida Rodrigues, B., . . . Katashima, C. K. (2014). Exercise training decreases mitogen‐activated protein kinase phosphatase‐3 expression and suppresses hepatic gluconeogenesis in obese mice. The Journal of physiology, 592(6), 1325-1340. ##Puska, P., Nishida, C., Porter, D., & Organization, W. H. (2003). Obesity and overweight. World Health Organization, 1-2. ##Reusch, J. E., Colton, L. A., & Klemm, D. J. (2000). Creb activation induces adipogenesis in 3t3-l1 cells. Molecular and cellular biology, 20(3), 1008-102. ##Rocha-Rodrigues, S., Rodríguez, A., Gouveia, A. M., Gonçalves, I. O., Becerril, S., Ramírez, B., . . . Magalhães, J. (2016). Effects of physical exercise on myokines expression and brown adipose-like phenotype modulation in rats fed a high-fat diet. Life sciences, 165, 100-108. ##Rosen, E. D., & MacDougald, O. A. (2006). Adipocyte differentiation from the inside out. Nature reviews Molecular cell biology, 7(12), 885-896. ##Sakurai, T., Endo, S., Hatano, D., Ogasawara, J., Kizaki, T., Oh‐ishi, S., . . . Ohno, H. (2010). Effects of exercise training on adipogenesis of stromal‐vascular fraction cells in rat epididymal white adipose tissue. Acta physiologica, 200(4), 325-338. ##Sakurai, T., Ogasawara, J., Kizaki, T., Ishibashi, Y., Sumitani, Y., Takahashi, K., . . . Haga, S. (2012). Preventive and improvement effects of exercise training and supplement intake in white adipose tissues on obesity and lifestyle-related diseases. Environmental health and preventive medicine, 17(5), 348-356. ##Sakurai, T., Ogasawara, J., Kizaki, T., Sato, S., Ishibashi, Y., Takahashi, M., . . . Takahashi, K. (2013). The effects of exercise training on obesity-induced dysregulated expression of adipokines in white adipose tissue. International journal of endocrinology, 2013. ##Wu, B., Ding, J., Chen, A., Song, Y., Xu, C., Tian, F., & Zhao, J. (2022). Aerobic exercise improves adipogenesis in diet-induced obese mice via the lncsra/p38/jnk/pparγ pathway. Nutrition Research, 105, 20-32. ##Xu, Q., Li, Y., Lin, S., Wang, Y., Zhu, J., & Lin, Y. (2021). Klf4 inhibits the differentiation of goat intramuscular preadipocytes through targeting c/ebpβ directly. Frontiers in Genetics, 12, 663759. ##Yoon, Y.-S., Liu, W., Van de Velde, S., Matsumura, S., Wiater, E., Huang, L., & Montminy, M. (2021). Activation of the adipocyte creb/crtc pathway in obesity. Communications Biology, 4(1), 1214##. Zechner, R., Kienesberger, P. C., Haemmerle, G., Zimmermann, R., & Lass, A. (2009). Adipose triglyceride lipase and the lipolytic catabolism of cellular fat stores. Journal of lipid research, 50(1), 3-21. ##Zhao, J., Zhou, A., & Qi, W. (2022). The potential to fight obesity with adipogenesis modulating compounds. International journal of molecular sciences, 23(4), 2299.##