اثر حاد فعالیت مقاومتی با و بدون محدودیت جریان خون و ماسک هایپوکسی بر غلظت پلاسمایی IGF-1، لاکتات خون و میزان درک فشار فعالیت در مردان تمرین کرده

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری فیزیولوژی ورزشی، گروه فیزیولوژی ورزشی، دانشکده علوم ورزشی، دانشگاه گیلان، رشت، ایران.

2 دانشیار گروه فیزیولوژی ورزشی، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه گیلان، رشت، ایران.

10.22080/jaep.2024.27115.2182

چکیده

اهداف: فعالیت مقاومتی با شیوه‌های نوین تمرینی پاسخ‌های فیزیولوژیکی و روانی مختلفی را به همراه دارد. از این رو، هدف اصلی این پژوهش بررسی آثار محدودیت جریان خون و ماسک هایپوکسی بر غلظت پلاسمایی عامل رشد شبه انسولین-1 (IGF-1)، لاکتات خون و میزان درک فشار فعالیت در پاسخ حاد فعالیت مقاومتی در افراد تمرین کرده بود.
روش مطالعه: در این مطالعه 11 فرد تمرین کرده (با میانگین سنی سال 70/5 ± 18/29 و شاخص توده بدنی80/3 ± 27/25کیلوگرم بر متر مربع) به مدت سه هفته متوالی به صورت تصادفی و در سه گروه سنتی (کنترل) (1RM 75%-80%)، فعالیت مقاومتی به همراه محدودیت جریان خون و ماسک هایپوکسی ( 1RM20%-50%) قرار گرفتند. فعالیت مقاومتی شامل اجرای 4 نوبت حرکت باز شدن پا بود. نمونه‌های خونی قبل و بلافاصله بعد از فعالیت اندازه­گیری شد و برای ارزیابی شاخص درک فشار فعالیت، آزمودنی­ها با اجرای هر نوبت از فعالیت وضعیت خود را با توجه به جدول 6-20 ارزشی مقیاس  بورگ نسبت به فشار تمرین گزارش می­دادند. داده‌ها با استفاده از روش تجزیه و تحلیل واریانس مکرر، آزمون های تجزیه و تحلیل واریانس مختلط و آزمون تعقیبی بونفرونی در سطح معناداری 05/0p< مورد بررسی قرار گرفت.
یافته­ ها: هر سه روش فعالیت مقاومتی موجب افزایش معنی­دار لاکتات خون و میزان درک فشار (05/0p<) و عدم تغییر غلظت پلاسمایی IGF-1 در روش بدون محدودیت پس از فعالیت شد. همچنین، فعالیت مقاومتی با ماسک هایپوکسی میزان غلظت لاکتات خون و  درک فشار فعالیت را به اندازه قابل توجهی نسبت به دو روش دیگر افزایش داد (001/0p<).
نتیجه گیری: نتایج این تحقیق نشان داد که فعالیت مقاومتی با هر سه روش تمرینی موجب پاسخ­های متفاوت غلظت پلاسمایی IGF-1 لاکتات خون و میزان درک فشار فعالیت می­شود که میزان این تغییرات بستگی به شدت و نوع تمرین به کارگرفته شده دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Acute Effects of Resistance Exercise with and without Blood Flow Restriction and Hypoxic Mask on Plasma IGF-1, Blood Lactate, and Perceived Exertion in Trained Men

نویسندگان [English]

  • Abolfazl Rahmani 1
  • Javad Mehrabani 2
1 Exercise Physiology Department, Faculty of Physical Education and Sport Sciences, University of Guilan, Rasht, Iran.
2 Exercise Physiology Department, Faculty of Physical Education and Sport Sciences, University of Guilan, Rasht, Iran.
چکیده [English]

Objectives: Resistance exercise with novel training methods is accompanied by various physiological and psychological responses. The main purpose of this research was to investigate the effects of blood flow restriction and hypoxic mask on plasma IGF-1 concentration, blood lactate, and perceived exertion in response to acute resistance exercise in trained individuals.
Methods: A crossover design was used in this study. 11 trained individuals (mean age 29.2±5.7 years and body mass index 25.3± 2.7 kg/m2) were randomly assigned to three resistance training methods for three consecutive weeks: traditional resistance training (75%-80% 1RM), resistance training with blood flow restriction (20%-50% 1RM), and resistance training with hypoxic mask (20%-50% 1RM). Resistance exercise consisted of four sets of leg press exercises. Blood samples were measured before and immediately after exercise, and to assess the perceived exertion, the subjects reported their status using the Borg scale (6-20 points) after each set of exercise. Data were analyzed using repeated measures ANOVA, mixed ANOVA, and Bonferroni post hoc test at a significance level of p<0.05.
 Results: All three resistance training methods resulted in a significant increase in blood lactate and perceived exertion (p<0.05) and no change in plasma IGF-1 concentration in the non-restricted method after exercise. Additionally, resistance training with hypoxic mask significantly increased blood lactate concentration and perceived exertion compared to the other two methods (p<0.01).
Conclusion: The results of this research showed that resistance exercise with all three training methods results in different responses in plasma IGF-1 concentration, blood lactate, and perceived exertion, and the magnitude of these changes depends on the intensity and type of exercise used.

کلیدواژه‌ها [English]

  • Resistance Exercise
  • KAATSU
  • Blood Flow Restriction
  • Hypoxic Mask
  • Insulin-like Growth Factor-1
  • Blood Lactate
##Abe, T., Yasuda, T., Midorikawa, T., Sato, Y., CF, K., Inoue, K., et al. (2005). Skeletal muscle size and circulating IGF-1 are increased after two weeks of twice daily “KAATSU” resistance training. International Journal of KAATSU Training Research, 16-12. ##Ahtiainen, J. P., Pakarinen, A., Alen, M., Kraemer, W. J., & Häkkinen, K. (2005). Short vs. long rest period between the sets in hypertrophic resistance training: influence on muscle strength, size, and hormonal adaptations in trained men. Journal of Strength and Conditioning Research, 19(3), 572. ##Boroujerdi, S. S., & Rahimi, R. (2008). Acute GH and IGF-I responses to short vs. long rest period between sets during forced repetitions resistance training system. South African Journal for Research in Sport, Physical Education and Recreation, 30(2), 31-38. ##Burgomaster, K. A., Moore, D. R., Schofield, L. M., Phillips, S. M., Sale, D. G., & Gibala, M. J. (2003). Resistance training with vascular occlusion: metabolic adaptations in human muscle. Medicine & Science in Sports & Exercise, 35(7), 1203-1208. ##Douda, H., Avloniti, A., Kasabalis, A., Smilios, I., & Tokmakidis, S. P. (2006). Application of Ratings of Perceived Exertion and Physiological Responses to Maximal Effort in Rhythmic Gymnasts. International Journal of Applied Sports Sciences, 18(2). ##Fujita, S., Abe, T., Drummond, M. J., Cadenas, J. G., Dreyer, H. C., Sato, Y., et al. (2007). Blood flow restriction during low-intensity resistance exercise increases S6K1 phosphorylation and muscle protein synthesis. Journal of applied physiology, 103(3), 903-910. ##Fujita, T., Brechue, W. F., Kurita, K., Sato, Y., & Abe, T. (2008). Increased muscle volume and strength following six days of low-intensity resistance training with restricted muscle blood flow. International Journal of KAATSU Training Research, 4(1), 1-8. ## García-Ramos, A., Barboza-González, P., Ulloa-Díaz, D., Rodriguez-Perea, A., Martinez-Garcia, D., Guede-Rojas, F., et al. (2019). Reliability and validity of different methods of estimating the one-repetition maximum during the free-weight prone bench pull exercise. Journal of sports sciences, 37(19), 2205-2212. ##Goto, K., Ishii, N., Kizuka, T., & Takamatsu, K. (2005). The impact of metabolic stress on hormonal responses and muscular adaptations. Medicine & Science in Sports & Exercise, 37(6), 955-963. ##Ho, J. Y., Huang, T. Y., Chien, Y. C., Chen, Y. C., & Liu, S. Y. (2014). Effects of acute exposure to mild simulated hypoxia on hormonal responses to low-intensity resistance exercise in untrained men. Res Sports Med, 22(3), 240-252. ##Kon, M., Ikeda, T., Homma, T., & Suzuki, Y. (2012). Effects of low-intensity resistance exercise under acute systemic hypoxia on hormonal responses. The Journal of Strength & Conditioning Research, 26(3), 611-617.##Kon, M., Nakagaki, K., Ebi, Y., Nishiyama, T., & Russell, A. P. (2015). Hormonal and metabolic responses to repeated cycling sprints under different hypoxic conditions. Growth Horm IGF Res, 25(3), 121-126. ##Kraemer, W. J., Adams, K., Cafarelli, E., Dudley, G. A., Dooly, C., Feigenbaum, M. S., et al. (2002). American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Medicine and science in sports and exercise, 34(2), 364-380. ##Kraemer, W. J., Marchitelli, L., Gordon, S. E., Harman, E., Dziados, J. E., Mello, R., et al. (1990). Hormonal and growth factor responses to heavy resistance exercise protocols. Journal of applied physiology, 69(4), 1442-1450. ##Kraemer, W. J., & Ratamess, N. A. (2005). Hormonal responses and adaptations to resistance exercise and training. Sports medicine, 35(4), 339-361. ##Krause, M. P. (2010). Concurrent validity of a pictorial rating of perceived exertion scale for bench stepping exercise. University of Pittsburgh##.Kurobe, K., Huang, Z., Nishiwaki, M., Yamamoto, M., Kanehisa, H., & Ogita, F. (2015). Effects of resistance training under hypoxic conditions on muscle hypertrophy and strength. Clin Physiol Funct Imaging, 35(3), 197-202. ##Loenneke, J., Wilson, G., & Wilson, J. (2010). A mechanistic approach to blood flow occlusion. International journal of sports medicine, 31(01), 1-4. ##Loenneke, J. P., Balapur, A., Thrower, A. D., Barnes, J., & Pujol, T. J. (2012). Blood flow restriction reduces time to muscular failure. European journal of sport science, 12(3), 238-243. ##Loenneke, J. P., Fahs, C. A., Wilson, J. M., & Bemben, M. G. (2011). Blood flow restriction: the metabolite/volume threshold theory. Med Hypotheses, 77(5), 748-752. ##Loenneke, J. P., Kim, D., Fahs, C. A., Thiebaud, R. S., Abe, T., Larson, R. D., et al. (2015). The effects of resistance exercise with and without different degrees of blood-flow restriction on perceptual responses. Journal of sports sciences, 33(14), 1472-1479. ##López-Pérez, M. E., Romero-Arenas, S., Colomer-Poveda, D., Keller, M., & Márquez, G. (2021). Psychophysiological Responses During a Cycling Test to Exhaustion While Wearing the Elevation Training Mask. The Journal of Strength & Conditioning Research. ##Madarame, H., Sasaki, K., & Ishii, N. (2010). Endocrine responses to upper-and lower-limb resistance exercises with blood flow restriction. Acta Physiologica Hungarica, 97(2), 192-200. ##Mattocks, K. T., Jessee, M. B., Counts, B. R., Buckner, S. L., Mouser, J. G., Dankel, S. J., et al. (2017). The effects of upper body exercise across different levels of blood flow restriction on arterial occlusion pressure and perceptual responses. Physiology & behavior, 171, 181-186. ##Mendonca, G. V., Vaz, J. R., Teixeira, M. S., Grácio, T., & Pezarat‐Correia, P. (2014). Metabolic cost of locomotion during treadmill walking with blood flow restriction. Clinical physiology and functional imaging, 34(4), 308-316. ##Moore, D. R., Burgomaster, K. A., Schofield, L. M., Gibala, M. J., Sale, D. G., & Phillips, S. M. (2004). Neuromuscular adaptations in human muscle following low intensity resistance training with vascular occlusion. Eur J Appl Physiol, 92(4-5), 399-406. ##Moore, D. R., Burgomaster, K. A., Schofield, L. M., Gibala, M. J., Sale, D. G., & Phillips, S. M. (2004). Neuromuscular adaptations in human muscle following low intensity resistance training with vascular occlusion. European journal of applied physiology, 92(4-5), 399-406. ##Motoyama, Y. L., Joel, G. B., Pereira, P. E., Esteves, G. J., & Azevedo, P. H. (2016). Airflow-restricting mask reduces acute performance in resistance exercise. Sports, 4(4), 46. ##Neto, G. R., Novaes, J. S., Salerno, V. P., Gonçalves, M. M., Piazera, B. K., Rodrigues-Rodrigues, T., et al. (2017). Acute effects of resistance exercise with continuous and intermittent blood flow restriction on hemodynamic measurements and perceived exertion. Perceptual and motor skills, 124(1), 277-292.##Patterson, S. D., Leggate, M., Nimmo, M. A., & Ferguson, R. A. (2013). Circulating hormone and cytokine response to low-load resistance training with blood flow restriction in older men. European journal of applied physiology, 113(3), 713-719. ##Poton, R., & Polito, M. D. (2016). Hemodynamic response to resistance exercise with and without blood flow restriction in healthy subjects. Clinical physiology and functional imaging, 36(3), 231-236. ##Rahmani, A., & Mirzaei, B. (2018). The acute effects of resistance exercise with blood flow and respiratory restriction on blood lactate and growth hormone in collegiate wrestlers. Metabolism and Exercise, 8 (2), 137-150. ##Ramadan, W., Xirouchaki, C. E., Mustafa, R., Saad, A., & Benite-Ribeiro, S. A. (2021). Effect of wearing an elevation training mask on physiological adaptation. Journal of Physical Education & Sport, 21(3). ##Reeves, G. V., Kraemer, R. R., Hollander, D. B., Clavier, J., Thomas, C., Francois, M., et al. (2006). Comparison of hormone responses following light resistance exercise with partial vascular occlusion and moderately difficult resistance exercise without occlusion. Journal of applied physiology, 101(6), 1616-1622. ##Richalet, J.-P., Letournel, M., & Souberbielle, J.-C. (2010). Effects of high-altitude hypoxia on the hormonal response to hypothalamic factors. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 299(6), R1685-R1692. ##Scott, B. R., Slattery, K. M., Sculley, D. V., & Dascombe, B. J. (2014). Hypoxia and resistance exercise: a comparison of localized and systemic methods. Sports medicine, 44(8), 1037-1054. ##Scott, B. R., Slattery, K. M., Sculley, D. V., Hodson, J. A., & Dascombe, B. J. (2015). Physical performance during high-intensity resistance exercise in normoxic and hypoxic conditions. The Journal of Strength & Conditioning Research, 29(3), 807-815. ##Seo, D.-I., So, W.-Y., & Sung, D. J. (2016). Effect of a low-intensity resistance exercise programme with blood flow restriction on growth hormone and insulin-like growth factor-1 levels in middle-aged women. South African Journal for Research in Sport, Physical Education and Recreation, 38(2), 167-177. ##Suga, T., Okita, K., Morita, N., Yokota, T., Hirabayashi, K., Horiuchi, M., et al. (2009). Intramuscular metabolism during low-intensity resistance exercise with blood flow restriction. Journal of applied physiology, 106(4), 1119-1124. ##Takano, H., Morita, T., Iida, H., Asada, K.-i., Kato, M., Uno, K., et al. (2005). Hemodynamic and hormonal responses to a short-term low-intensity resistance exercise with the reduction of muscle blood flow. European journal of applied physiology, 95(1), 65-73. ##Yoong, N. M., Selvarajah, V., Hooi, L. B., Kumar, R., & Sumartiningsih, S. (2021). Effect of elevation training mask 2.0 on Rating Perceived Exertion (RPE) during resistance exercise. Journal of Sports Science and Nutrition, 2(1), 89-92. ##