تاثیر ده هفته تمرین هوازی به همراه مصرف روغن گلرنگ بر بیان ژن های PGC-1α وPPAR-α در موش‌های مبتلا به کبدچرب القا شده با دگزامتازون

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری فیزیولوژی ورزشی، دانشکده علوم ورزشی، دانشگاه مازندران، بابلسر، ایران.

2 استاد گروه فیزیولوژی ورزشی، دانشکده علوم ورزشی، دانشگاه مازندران، بابلسر، ایران

3 استادیار گروه فیزیولوژی ورزشی، دانشکده علوم ورزشی، دانشگاه مازندران، بابلسر، ایران.

4 گروه فیزیولوژی ورزشی، دانشکده علوم ورزشی، دانشگاه مازندران، بابلسر، ایران

10.22080/jaep.2024.26264.2166

چکیده

اهداف: هدف از این مطالعه بررسی تاثیر تمرین هوازی با شدت متوسط و بالا همراه با مصرف روغن دانه گلرنگ بر بیان ژن­های PPAR-α و PGC-1α در موش­های مبتلا به کبدچرب القا شده با دگزامتازون بود.
روش مطالعه: 35 موش صحرایی نر در هفت گروه به این ترتیب تقسیم شدند: کنترل سالم (HC)، کنترل کبد چرب (FC)، کبد چرب  -تمرین با شدت متوسط (FME)، کبد چرب - تمرین با شدت بالا (FHE)، کبد چرب -روغن دانه گلرنگ  (FO)، کبد چرب -روغن - تمرین با شدت متوسط (FOME) و کبد چرب -روغن - تمرین با شدت بالا (FOHE). القای بیماری کبد چرب با تزریق دگزامتازون (8 میلی گرم/کیلوگرم وزن بدن) انجام شد. گروه های تمرینی به مدت 10 هفته، پنج روز در هفته با شدت بالا و متوسط در مسافت یکسانی روی تردمیل دویدند. پروفایل لیپیدی و سطح گلوکز سرم همراه با بیان کبدی ژن PGC1α و PPARα اندازه­گیری شد.
یافته­ ها: نتایج نشان داد بیماری کبد چرب ناشی از دگزامتازون باعث کاهش معنی­دار در بیان ژن PGC1α و افزایش سطح گلوکز و TG سرم در گروه FC نسبت به گروه HC شد. علاوه بر این، بیان ژن PGC1α در گروه FHE در مقایسه با گروه های FC،و FOHE به طور قابل توجهی افزایش یافت. کاهش معنی داری در سطح گلوکز و TC سرم در گروه های FME، FHE، FOME و FOHE در مقایسه با گروه FC مشاهده شد. همچنین کاهش معنی داری در سطح TG در گروه FOHE نسبت به گروه های FC، FO و FOME مشاهده شد.
نتیجه گیری نتایج نشان داد تمرین هوازی با شدت بالا می­تواند بیان ژن PGC1α را افزایش دهد و با توجه به نقش کلیدی آن در رونویسی عوامل دخیل در اکسیداسیون اسیدهای چرب و هموستاز گلوکز در کبد، به نظر می­رسد تمرین باشدت بالا می­تواند در بهبود بیماری کبد چرب نسبت به تمرین با شدت متوسط موثرتر باشد.

کلیدواژه‌ها


عنوان مقاله [English]

The Effect of Endurance Training with Moderate and High Intensities along the Consumption of Safflower Oil on the PGC-1α and PPAR-α Genes Expression in Rat with Dexamethasone-Induced Fatty liver Disease

نویسندگان [English]

  • Sajad Aslani-Moghanjoughi 1
  • Rozita Fathi 2
  • Khadijeh Nasiri 3
  • َAbolfazl Akbari 4
1 Department of Exercise Physiology, Faculty of Sport Sciences,, University of Mazandaran, Babolsar, Iran
2 Department of Exercise Physiology, Faculty of Sport Science, University of Mazandaran, Babolsar, Iran.
3 Department of Exercise Physiology, Faculty of Sport Sciences, University of Mazandaran, Babolsar, Iran.
4 Department of Exercise Physiology, Faculty of Sport Sciences,, University of Mazandaran, Babolsar, Iran,
چکیده [English]

Objectives: The purpose of this study was to determine whether moderate and high-intensity endurance exercise combined with safflower seed oil is effective in treating non-alcoholic fatty liver disease (NAFLD).
Methods: We divided 35 male rats into seven groups, including: healthy control group (HC), fatty liver control group (FC), fatty liver plus moderate exercise training (FME), fatty liver plus high intensity exercise training (FHE), fatty liver plus safflower seed oil (5 mg/kg of body weight by gavage) (FO), fatty liver plus oil plus moderate exercise training (FOME) group and fat liver plus oil plus high exercise training (FOHE). The induction of NAFLD was accomplished by injecting dexamethasone (DEX:8mg/kg). Training groups ran on the treadmill five days per week at high and medium intensities at the same distance for 10 weeks. Lipid profile and glucose levels in serum along with liver expression of PGC1α and PPARα genes were measured.
Results: The results showed that DEX-induced NAFLD caused a significant decrease in PGC1α gene expression and an increase in serum glucose and TG levels in the FC group compared to the HC group. In addition, PGC1α gene expression was significantly increased in the FHE group compared to the FC, FOME and FOHE groups. A significant decrease was observed in serum glucose and TC levels in the FME, FHE, FOME and FOHE groups compared to the FC group. Also, a significant decrease in the TG level was observed in the FOHE group compared to the FC, FO and FOME groups.
Conclusion: The results showed that only high-intensity endurance training can increase the expression of PGC1α gene, and due to the key role in the transcription of factors involved in fatty acid oxidation and glucose homeostasis in the liver, high-intensity training can be more effective in improving fatty liver disease than moderate-intensity training.

کلیدواژه‌ها [English]

  • Dexamethasone
  • NAFLD
  • Aerobic Training
  • Safflower Oil
##Aharoni-Simon, M., Hann-Obercyger, M., Pen, S., Madar, Z., & Tirosh, O. (2011). Fatty liver is associated with impaired activity of PPARγ-coactivator 1α (PGC1α) and mitochondrial biogenesis in mice. Laboratory Investigation, 91(7), 1018-1028. ##Akimoto, T., Sorg, B. S., & Yan, Z. (2004). Real-time imaging of peroxisome proliferator-activated receptor-γ coactivator-1α promoter activity in skeletal muscles of living mice. American Journal of Physiology-Cell Physiology, 287(3), C790-C796. ##Annie, L., Gurusubramanian, G., & Roy, V. K. (2019). Dexamethasone mediated downregulation of PGC-1α and visfatin regulates testosterone synthesis and antioxidant system in mouse testis. Acta Histochemica, 121(2), 182-188. ##Bagherniya, M., Nobili, V., Blesso, C. N., & Sahebkar, A. (2018). Medicinal plants and bioactive natural compounds in the treatment of non-alcoholic fatty liver disease: A clinical review. Pharmacological Research, 130, 213-240. ## Besse-Patin, A., Léveillé, M., Oropeza, D., Nguyen, B. N., Prat, A., & Estall, J. L. (2017). Estrogen signals through peroxisome proliferator-activated Receptor− γ coactivator 1α to reduce oxidative damage associated with diet-induced fatty liver disease. Gastroenterology, 152(1), 243-256. ## Cao, W., Collins, Q. F., Becker, T. C., Robidoux, J., Lupo, E. G., Xiong, Y., Daniel, K. W., Floering, L., & Collins, S. (2005). p38 Mitogen-activated protein kinase plays a stimulatory role in hepatic gluconeogenesis. Journal of Biological Chemistry, 280(52), 42731-42737. ##Cao, W., Daniel, K. W., Robidoux, J., Puigserver, P., Medvedev, A. V., Bai, X., Floering, L. M., Spiegelman, B. M., & Collins, S. (2004). p38 mitogen-activated protein kinase is the central regulator of cyclic AMP-dependent transcription of the brown fat uncoupling protein 1 gene. Molecular and cellular biology, 24(7), 3057-3067. ## Chavanelle, V., Boisseau, N., Otero, Y. F., Combaret, L., Dardevet, D., Montaurier, C., Delcros, G., Peltier, S. L., & Sirvent, P. (2017). Effects of high-intensity interval training and moderate-intensity continuous training on glycaemic control and skeletal muscle mitochondrial function in db/db mice. Scientific reports, 7(1), 204. ##Christ-Crain, M., Kola, B., Lolli, F., Fekete, C., Seboek, D., Wittman, G., & Ajodha, S. (2008). Harvey-White j, Kunos G, Müller B. Pralong F, Aubert G, Arnaldi G, Giacchetti G, Boscaro M, Grossman AB, Korbonits M, 1672-1683. ##Cole, T., Wilcox, H., & Heimberg, M. (1982). Effects of adrenalectomy and dexamethasone on hepatic lipid metabolism. Journal of lipid research, 23(1), 81-91. ##Croce, M. A., Eagon, J. C., LaRiviere, L. L., Korenblat, K. M., Klein, S., & Finck, B. N. (2007). Hepatic lipin 1β expression is diminished in insulin-resistant obese subjects and is reactivated by marked weight loss. Diabetes, 56(9), 2395-2399. ##Cui, A., Fan, H., Zhang, Y., Zhang, Y., Niu, D., Liu, S., Liu, Q., Ma, W., Shen, Z., & Shen, L. (2019). Dexamethasone-induced Krüppel-like factor 9 expression promotes hepatic gluconeogenesis and hyperglycemia. The Journal of clinical investigation, 129(6), 2266-2278. ##Czock, D., Keller, F., Rasche, F. M., & Häussler, U. (2005). Pharmacokinetics and pharmacodynamics of systemically administered glucocorticoids. Clinical pharmacokinetics, 44, 61-98. ## Dolatabadi, A. A., & Mahboubi, M. (2015). A study of the influence of dexamethasone on lipid profile and enzyme lactate dehydrogenase. Journal of medicine and life, 8(Spec Iss 3), 72. ##Farzanegi, P., Dana, A., Ebrahimpoor, Z., Asadi, M., & Azarbayjani, M. A. (2019). Mechanisms of beneficial effects of exercise training on non-alcoholic fatty liver disease (NAFLD): Roles of oxidative stress and inflammation. European journal of sport science, 19(7), 994-1003. ##Fernandez-Marcos, P. J., & Auwerx, J. (2011). Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis. The American journal of clinical nutrition, 93(4), 884S-890S. ##Finck, B. N., & Kelly, D. P. (2006). PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. The Journal of clinical investigation, 116(3), 615-622. ##Francque, S., Verrijken, A., Caron, S., Prawitt, J., Paumelle, R., Derudas, B., Lefebvre, P., Taskinen, M.-R., Van Hul, W., & Mertens, I. (2015). PPARα gene expression correlates with severity and histological treatment response in patients with non-alcoholic steatohepatitis. Journal of hepatology, 63(1), 164-173. ##Gibala, M. J., McGee, S. L., Garnham, A. P., Howlett, K. F., Snow, R. J., & Hargreaves, M. (2009). Brief intense interval exercise activates AMPK and p38 MAPK signaling and increases the expression of PGC-1α in human skeletal muscle. Journal of applied physiology, 106(3), 929-934. ##Goto, M., Terada, S., Kato, M., Katoh, M., Yokozeki, T., Tabata, I., & Shimokawa, T. (2000). cDNA cloning and mRNA analysis of PGC-1 in epitrochlearis muscle in swimming-exercised rats. Biochemical and biophysical research communications, 274(2), 350-354. ## Gounarides, J. S., Korach-André, M., Killary, K., Argentieri, G., Turner, O., & Laurent, D. (2008). Effect of dexamethasone on glucose tolerance and fat metabolism in a diet-induced obesity mouse model. Endocrinology, 149(2), 758-766. ##Gupta, A. P., Singh, P., Garg, R., Valicherla, G. R., Riyazuddin, M., Syed, A. A., Hossain, Z., & Gayen, J. R. (2019). Pancreastatin inhibitor activates AMPK pathway via GRP78 and ameliorates dexamethasone induced fatty liver disease in C57BL/6 mice. Biomedicine & Pharmacotherapy, 116, 108959. ## Herzig, S., Long, F., Jhala, U. S., Hedrick, S., Quinn, R., Bauer, A., Rudolph, D., Schutz, G., Yoon, C., & Puigserver, P. (2001). CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature, 413(6852), 179-183. ##Hoene, M., Franken, H., Fritsche, L., Lehmann, R., Pohl, A., Häring, H., Zell, A., Schleicher, E., & Weigert, C. (2010). Activation of the mitogen-activated protein kinase (MAPK) signalling pathway in the liver of mice is related to plasma glucose levels after acute exercise. Diabetologia, 53, 1131-1141. ##Holloszy, J. (2008). Regulation by exercise of skeletal muscle content of mitochondria and GLUT4. J Physiol Pharmacol, 59(Suppl 7), 5-18. ##Høydal, M. A., Wisløff, U., Kemi, O. J., & Ellingsen, Ø. (2007). Running speed and maximal oxygen uptake in rats and mice: practical implications for exercise training. European Journal of Preventive Cardiology, 14(6), 753-760. ##Huang, Y., Chen, K., Ren, Q., Yi, L., Zhu, J., Zhang, Q., & Mi, M. (2018). Dihydromyricetin attenuates dexamethasone-induced muscle atrophy by improving mitochondrial function via the PGC-1α pathway. Cellular physiology and biochemistry, 49(2), 758-779. ##Kanda, T., Goto, T., Hirotsu, Y., Masuzaki, R., Moriyama, M., & Omata, M. (2020). Molecular mechanisms: connections between nonalcoholic fatty liver disease, steatohepatitis and hepatocellular carcinoma. International journal of molecular sciences, 21(4), 1525. ##Keating, S. E., Hackett, D. A., Parker, H. M., O’Connor, H. T., Gerofi, J. A., Sainsbury, A., Baker, M. K., Chuter, V. H., Caterson, I. D., & George, J. (2015). Effect of aerobic exercise training dose on liver fat and visceral adiposity. Journal of hepatology, 63(1), 174-182. ##Koliaki, C., Szendroedi, J., Kaul, K., Jelenik, T., Nowotny, P., Jankowiak, F., Herder, C., Carstensen, M., Krausch, M., & Knoefel, W. T. (2015). Adaptation of hepatic mitochondrial function in humans with non-alcoholic fatty liver is lost in steatohepatitis. Cell metabolism, 21(5), 739-746. ##Kumar, V. H., Im, N. N., Huilgol, S. V., Yendigeri, S. M., Narendar, K., & Rajasekhar, C. (2015). Dose dependent hepatic and endothelial changes in rats treated with dexamethasone. Journal of clinical and diagnostic research: JCDR, 9(5), FF08. ##Lavoie, J.-M., & Gauthier, M.-S. (2006). Regulation of fat metabolism in the liver: link to non-alcoholic hepatic steatosis and impact of physical exercise. Cellular and Molecular Life Sciences CMLS, 63, 1393-1409. ##Laye, M. J., Rector, R. S., Borengasser, S. J., Naples, S. P., Uptergrove, G. M., Ibdah, J. A., Booth, F. W., & Thyfault, J. P. (2009). Cessation of daily wheel running differentially alters fat oxidation capacity in liver, muscle, and adipose tissue. Journal of applied physiology, 106(1), 161-168. ##Lemberger, T., Staels, B., Saladin, R., Desvergne, B., Auwerx, J., & Wahli, W. (1994). Regulation of the peroxisome proliferator-activated receptor alpha gene by glucocorticoids. Journal of Biological Chemistry, 269(40), 24527-24530. ##Leone, T. C., Lehman, J. J., Finck, B. N., Schaeffer, P. J., Wende, A. R., Boudina, S., Courtois, M., Wozniak, D. F., Sambandam, N., & Bernal-Mizrachi, C. (2005). PGC-1α deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS biology, 3(4), e101. ##Lin, J., Handschin, C., & Spiegelman, B. M. (2005). Metabolic control through the PGC-1 family of transcription coactivators. Cell metabolism, 1(6), 361-370.Liu, Z. L., Xie, L. Z., Zhu, J., Li, G. Q., Grant, S. J., & Liu, J. P. (2013). Herbal medicines for fatty liver diseases. Cochrane Database of Systematic Reviews(8). ##Luan, G., Li, G., Ma, X., Jin, Y., Hu, N., Li, J., Wang, Z., & Wang, H. (2019). Dexamethasone-induced mitochondrial dysfunction and insulin resistance-study in 3T3-L1 adipocytes and mitochondria isolated from mouse liver. Molecules, 24(10), 1982. ##LUCIC VRDOLJAK, A., Bradamante, V., RADIC, B., Peraica, M., Fuchs, R., & Reiner, Z. (2005). Butyrylcholinesterase activity and plasma lipids in dexamethasone treated rats. Acta pharmaceutica, 55(2), 177-185. ##Mahendran, P., & Devi, C. S. (2001). Effect of Garcinia cambogia extract on lipids and lipoprotein composition in dexamethasone administered rats. Indian journal of physiology and pharmacology, 45(3), 345-350. ##Manco, M. (2017). Insulin resistance and NAFLD: A dangerous liaison beyond the genetics. Children, 4(8), 74. ##Mani, V., Lee, S.-K., Yeo, Y., & Hahn, B.-S. (2020). A metabolic perspective and opportunities in pharmacologically important safflower. Metabolites, 10(6), 253. ##Matiello, R., Fukui, R. T., Silva, M. E., Rocha, D. M., Wajchenberg, B. L., Azhar, S., & Santos, R. F. (2010). Differential regulation of PGC-1α expression in rat liver and skeletal muscle in response to voluntary running. Nutrition & metabolism, 7(1), 1-8. ##Morris, E. M., Meers, G. M., Booth, F. W., Fritsche, K. L., Hardin, C. D., Thyfault, J. P., & Ibdah, J. A. (2012). PGC-1α overexpression results in increased hepatic fatty acid oxidation with reduced triacylglycerol accumulation and secretion. American Journal of Physiology-Gastrointestinal and Liver Physiology, 303(8), G979-G992. ##Nader, N., Ng, S. S. M., Lambrou, G. I., Pervanidou, P., Wang, Y., Chrousos, G. P., & Kino, T. (2010). AMPK regulates metabolic actions of glucocorticoids by phosphorylating the glucocorticoid receptor through p38 MAPK. Molecular endocrinology, 24(9), 1748-1764. ##Nikroo, H., Hosseini, S. R. A., Fathi, M., Sardar, M. A., & Khazaei, M. (2020). The effect of aerobic, resistance, and combined training on PPAR-α, SIRT1 gene expression, and insulin resistance in high-fat diet-induced NAFLD male rats. Physiology & Behavior, 227, 113149. ##Nimrouzi, M., Ruyvaran, M., Zamani, A., Nasiri, K., & Akbari, A. (2020). Oil and extract of safflower seed improve fructose induced metabolic syndrome through modulating the homeostasis of trace elements, TNF-α and fatty acids metabolism. Journal of ethnopharmacology, 254, 112721. ##Oh, S., So, R., Shida, T., Matsuo, T., Kim, B., Akiyama, K., Isobe, T., Okamoto, Y., Tanaka, K., & Shoda, J. (2017). High-intensity aerobic exercise improves both hepatic fat content and stiffness in sedentary obese men with nonalcoholic fatty liver disease. Scientific reports, 7(1), 43029. ##Ok, D.-P., Ko, K., & Bae, J. Y. (2018). Exercise without dietary changes alleviates nonalcoholic fatty liver disease without weight loss benefits. Lipids in health and disease, 17, 1-7. ##Oliveira, C. P., de Lima Sanches, P., de Abreu-Silva, E. O., & Marcadenti, A. (2016). Nutrition and physical activity in nonalcoholic fatty liver disease. Journal of diabetes research, 2016. ##Peeters, A., & Baes, M. (2010). Role of PPARα in hepatic carbohydrate metabolism. PPAR research, 2010. ##Piccinin, E., Villani, G., & Moschetta, A. (2019). Metabolic aspects in NAFLD, NASH and hepatocellular carcinoma: the role of PGC1 coactivators. Nature reviews Gastroenterology & hepatology, 16(3), 160-174. ##Pilegaard, H., Saltin, B., & Neufer, P. D. (2003). Exercise induces transient transcriptional activation of the PGC‐1α gene in human skeletal muscle. In: Wiley Online Library. ##Puigserver, P., Wu, Z., Park, C. W., Graves, R., Wright, M., & Spiegelman, B. M. (1998). A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell, 92(6), 829-839. ##Rahnert, J. A., Zheng, B., Hudson, M. B., Woodworth-Hobbs, M. E., & Price, S. R. (2016). Glucocorticoids alter CRTC-CREB signaling in muscle cells: impact on PGC-1α expression and atrophy markers. PLoS One, 11(7), e0159181. ##Rasmussen, M. K., Thøgersen, R., Lindholm, P. H., Bertram, H. C., & Pilegaard, H. (2023). Hepatic PGC-1α has minor regulatory effect on the liver transcriptome and metabolome during high fat high fructose diet and exercise training. Gene, 851, 147039. ##Rius-Pérez, S., Torres-Cuevas, I., Millán, I., Ortega, Á. L., & Pérez, S. (2020). PGC-1α, inflammation, and oxidative stress: an integrative view in metabolism. Oxidative medicine and cellular longevity, 2020. ##Russell, A. P., Feilchenfeldt, J., Schreiber, S., Praz, M., Crettenand, A., Gobelet, C., Meier, C. A., Bell, D. R., Kralli, A., & Giacobino, J.-P. (2003). Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferator-activated receptor-γ coactivator-1 and peroxisome proliferator-activated receptor-α in skeletal muscle. Diabetes, 52(12), 2874-2881. ##Severino, C., Brizzi, P., Solinas, A., Secchi, G., Maioli, M., & Tonolo, G. (2002). Low-dose dexamethasone in the rat: a model to study insulin resistance. American Journal of Physiology-Endocrinology and Metabolism, 283(2), E367-E373. ##Shalam, M., Harish, M., & Farhana, S. (2006). Prevention of dexamethasone-and fructose-induced insulin resistance in rats by SH-01D, a herbal preparation. Indian Journal of Pharmacology, 38(6), 419. ##Sharabi, K., Tavares, C. D., Rines, A. K., & Puigserver, P. (2015). Molecular pathophysiology of hepatic glucose production. Molecular aspects of medicine, 46, 21-33. ##Terada, S., Goto, M., Kato, M., Kawanaka, K., Shimokawa, T., & Tabata, I. (2002). Effects of low-intensity prolonged exercise on PGC-1 mRNA expression in rat epitrochlearis muscle. Biochemical and biophysical research communications, 296(2), 350-354. ##Van der Windt, D. J., Sud, V., Zhang, H., Tsung, A., & Huang, H. (2018). The effects of physical exercise on fatty liver disease. Gene Expression The Journal of Liver Research, 18(2), 89-101. ##Viana, A. Y., Sakoda, H., Anai, M., Fujishiro, M., Ono, H., Kushiyama, A., Fukushima, Y., Sato, Y., Oshida, Y., & Uchijima, Y. (2006). Role of hepatic AMPK activation in glucose metabolism and dexamethasone-induced regulation of AMPK expression. Diabetes research and clinical practice, 73(2), 135-142. ##Wan, X., Zhu, X., Wang, H., Feng, Y., Zhou, W., Liu, P., Shen, W., Zhang, L., Liu, L., & Li, T. (2020). PGC1α protects against hepatic steatosis and insulin resistance via enhancing IL10‐mediated anti‐inflammatory response. The FASEB Journal, 34(8), 10751-10761. ##Wang, Y., Nakajima, T., Gonzalez, F. J., & Tanaka, N. (2020). PPARs as metabolic regulators in the liver: lessons from liver-specific PPAR-null mice. International journal of molecular sciences, 21(6), 2061. ##Weickert, M., & Pfeiffer, A. (2006). Signalling mechanisms linking hepatic glucose and lipid metabolism. Diabetologia, 49, 1732-1741. ##Westerbacka, J., Kolak, M., Kiviluoto, T., Arkkila, P., Sirén, J., Hamsten, A., Fisher, R. M., & Yki-Järvinen, H. (2007). Genes involved in fatty acid partitioning and binding, lipolysis, monocyte/macrophage recruitment, and inflammation are overexpressed in the human fatty liver of insulin-resistant subjects. Diabetes, 56(11), 2759-2765. ##Woods, A., Azzout-Marniche, D., Foretz, M., Stein, S. C., Lemarchand, P., Ferré, P., Foufelle, F., & Carling, D. (2000). Characterization of the role of AMP-activated protein kinase in the regulation of glucose-activated gene expression using constitutively active and dominant negative forms of the kinase. Molecular and cellular biology, 20(18), 6704-6711. ##Xu, L., Xia, H., Ni, D., Hu, Y., Liu, J., Qin, Y., Zhou, Q., Yi, Q., & Xie, Y. (2020). High-dose dexamethasone manipulates the tumor microenvironment and internal metabolic pathways in anti-tumor progression. International journal of molecular sciences, 21(5), 1846. ##Yoon, M. (2009). The role of PPARα in lipid metabolism and obesity: focusing on the effects of estrogen on PPARα actions. Pharmacological Research, 60(3), 151-159. ##Zakrzewska, K. E., Cusin, I., Stricker-Krongrad, A., Boss, O., Ricquier, D., Jeanrenaud, B., & Rohner-Jeanrenaud, F. (1999). Induction of obesity and hyperleptinemia by central glucocorticoid infusion in the rat. Diabetes, 48(2), 365-370. ##