##Ahmadi, Akbar, Sheikholeslami-Vatani, Dariush, Ghaeeni, Saeed, & Baazm, Maryam. (2021). The effects of different training modalities on monocarboxylate transporters MCT1 and MCT4, hypoxia inducible factor-1α (HIF-1α), and PGC-1α gene expression in rat skeletal muscles. Molecular Biology Reports, 48(3), 2153-2161. ##Asrani, Sumeet K, Devarbhavi, Harshad, Eaton, John, & Kamath, Patrick S. (2019). Burden of liver diseases in the world. Journal of hepatology, 70(1), 151-171. ##Bagheri, M Hossein, Azamian-Jazi, A, Banitalebi, E, Kazeminasab, F, & Nasr-Esfahani, M Hossein. (2021). Both high-intensity interval training and low-intensity endurance training decrease intrahepatic lipid deposits via alterations of the expression of HIF-1α, HIG2 in a murine model of non alcoholic fatty liver disease (NAFLD). Science & Sports, 36(2), 120-128. ## Bagherian, Mahdi, Banaeifar, Abdolali, Arshadi, Sajad, & Azarbayjani, Mohammad Ali. (2022). Effect of Training Intensity on HIF-1a Gene Expression and Cardiac TG Content in Rats with Non-Alcoholic Fatty Liver Disease. Journal of Shahid Sadoughi University of Medical Sciences. ## Brocherie, Franck, Millet, Grégoire P, D'Hulst, Gommaar, Van Thienen, Ruud, Deldicque, Louise, & Girard, Olivier. (2018). Repeated maximal‐intensity hypoxic exercise superimposed to hypoxic residence boosts skeletal muscle transcriptional responses in elite team‐sport athletes. Acta Physiologica, 222(1), e12851. ## Carabelli, Julieta, Burgueño, Adriana L, Rosselli, Maria Soledad, Gianotti, Tomas Fernández, Lago, Nestor R, Pirola, Carlos J, & Sookoian, Silvia. (2011). High fat diet‐induced liver steatosis promotes an increase in liver mitochondrial biogenesis in response to hypoxia. Journal of cellular and molecular medicine, 15(6), 1329-1338. ##Chen, Guo, Han, Zhe, Feng, DU, Chen, Yanfang, Chen, Linbo, Wu, Hao, . . . Fu, Changying. (2014). A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy. Molecular cell, 54(3), 362-377. ## Chen, Ming, Chen, Ziheng, Wang, Yueying, Tan, Zheng, Zhu, Chongzhuo, Li, Yanjun, . . . Liu, Lei. (2016). Mitophagy receptor FUNDC1 regulates mitochondrial dynamics and mitophagy. Autophagy, 12(4), 689-702. ##Chen, Ziheng, Siraj, Sami, Liu, Lei, & Chen, Quan. (2017). MARCH5-FUNDC1 axis fine-tunes hypoxia-induced mitophagy. Autophagy, 13(7), 1244-1245. ## Cioffi, Federica, Giacco, Antonia, Petito, Giuseppe, de Matteis, Rita, Senese, Rosalba, Lombardi, Assunta, . . . Lanni, Antonia. (2022). Altered mitochondrial quality control in rats with metabolic dysfunction-associated fatty liver disease (MAFLD) induced by high-fat feeding. Genes, 13(2), 315. ##Çolak, Rıdvan, Ağaşcıoğlu, Eda, & Çakatay, Ufuk. (2021). “Live High Train Low” Hypoxic Training Enhances Exercise Performance with Efficient Redox Homeostasis in Rats' Soleus Muscle. High Altitude Medicine & Biology, 22(1), 77-86. ##Drake, Joshua C, Wilson, Rebecca J, & Yan, Zhen. (2016). Molecular mechanisms for mitochondrial adaptation to exercise training in skeletal muscle. The FASEB Journal, 30(1), 13. ## Flores, Karen, Siques, Patricia, Brito, Julio, Ordenes, Stefany, Arriaza, Karem, Pena, E, . . . Arribas, Silvia. (2020). Lower body weight in rats under hypobaric hypoxia exposure would lead to reduced right ventricular hypertrophy and increased AMPK activation. Frontiers in Physiology, 11, 342. ##Gastaldelli, Amalia. (2017). Insulin resistance and reduced metabolic flexibility: cause or consequence of NAFLD? Clinical science, 131(22), 2701-2704. ## Gauthier, Marie-Soleil, Favier, Roland, & Lavoie, Jean-Marc. (2006). Time course of the development of non-alcoholic hepatic steatosis in response to high-fat diet-induced obesity in rats. British Journal of Nutrition, 95(2), 273-281. ##Gonçalves, Inês O, Passos, Emanuel, Diogo, Cátia V, Rocha-Rodrigues, Sílvia, Santos-Alves, Estela, Oliveira, Paulo J, . . . Magalhães, José. (2016). Exercise mitigates mitochondrial permeability transition pore and quality control mechanisms alterations in nonalcoholic steatohepatitis. Applied Physiology, Nutrition, and Metabolism, 41(3), 298-306. ##Han, Chong, Lu, Peng, & Yan, Shi-zhan. (2022). Effects of high-intensity interval training on mitochondrial supercomplex assembly and biogenesis, mitophagy, and the AMP-activated protein kinase pathway in the soleus muscle of aged female rats. Experimental Gerontology, 158, 111648. ##Han, Jie, He, Yaping, Zhao, Hui, & Xu, Xiaowei. (2019). Hypoxia inducible factor‐1 promotes liver fibrosis in nonalcoholic fatty liver disease by activating PTEN/p65 signaling pathway. Journal of Cellular Biochemistry, 120(9), 14735-14744. ##Hosseini, Seyed Morteza, Mohebbi, Hamid, Ghafoori, Hossein, & Rezadoost, Mohammad Hosseine. (2023). The effect of hypoxia and normoxia training on autophagy in male rats hepatocytes with a high-fat diet. Journal of Applied Health Studies in Sport Physiology(Articles in Press). ##Ito, Makoto, Suzuki, Jun, Tsujioka, Shigeharu, Sasaki, Minoru, Gomori, Akira, Shirakura, Takashi, . . . Iwaasa, Hisashi. (2007). Longitudinal analysis of murine steatohepatitis model induced by chronic exposure to high‐fat diet. Hepatology Research, 37(1), 50-57. ##Jendzjowsky, Nicholas G, & DeLorey, Darren S. (2011). A prospective evaluation of non-interval-and interval-based exercise training progressions in rodents. Applied Physiology, Nutrition, and Metabolism, 36(5), 723-729. ##Jump, Donald B. (2011). Fatty acid regulation of hepatic lipid metabolism. Current opinion in clinical nutrition and metabolic care, 14(2), 115. ##Ke, Po-Yuan. (2020). Mitophagy in the Pathogenesis of Liver Diseases Review (1, Trans.). In 1 (Ed.), CELLS (1 ed., Vol. 1, pp. 1). 1: 1. (Reprinted from: 1). ##Khalafi, Mousa, & Symonds, Michael E. (2021). The impact of high intensity interval training on liver fat content in overweight or obese adults: A meta-analysis. Physiology & Behavior, 236, 113416. ##Kistler, Kristin D, Brunt, Elizabeth M, Clark, Jeanne M, Diehl, Anna Mae, Sallis, James F, Schwimmer, Jeffrey B, & Group, NASH CRN Research. (2011). Physical activity recommendations, exercise intensity, and histological severity of nonalcoholic fatty liver disease. The American journal of gastroenterology, 106(3), 460. ## Laker, Rhianna C, Drake, Joshua C, Wilson, Rebecca J, Lira, Vitor A, Lewellen, Bevan M, Ryall, Karen A, . . . Goodyear, Laurie J. (2017). Ampk phosphorylation of Ulk1 is required for targeting of mitochondria to lysosomes in exercise-induced mitophagy. Nature communications, 8(1), 548. ## Larson-Casey, Jennifer L, He, Chao, & Carter, A Brent. (2020). Mitochondrial quality control in pulmonary fibrosis. Redox biology, 33, 101426. ## Lee, Sooyeon, & Kim, Jae-Sung. (2014). Mitophagy: therapeutic potentials for liver disease and beyond. Toxicological research, 30(4), 243-250. ##Li, Jia, Li, Yanchun, Atakan, Muhammed M, Kuang, Jujiao, Hu, Yang, Bishop, David J, & Yan, Xu. (2020). The molecular adaptive responses of skeletal muscle to high-intensity exercise/training and hypoxia. Antioxidants, 9(8), 656. ## Li, Ruibing, Toan, Sam, & Zhou, Hao. (2020). Role of mitochondrial quality control in the pathogenesis of nonalcoholic fatty liver disease. Aging (Albany NY), 12(7), 6467. ## Lindholm, Malene E, & Rundqvist, Helene. (2016). Skeletal muscle hypoxia‐inducible factor‐1 and exercise. Experimental physiology, 101(1), 28-32. ##Liu, Lei, Feng, Du, Chen, Guo, Chen, Ming, Zheng, Qiaoxia, Song, Pingping, . . . Qi, Wanjun. (2012). Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nature cell biology, 14(2), 177-185. ## Livak, Kenneth J, & Schmittgen, Thomas D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. methods, 25(4), 402-408. ##Lundby, Carsten, Gassmann, Max, & Pilegaard, Henriette. (2006). Regular endurance training reduces the exercise induced HIF-1α and HIF-2α mRNA expression in human skeletal muscle in normoxic conditions. European journal of applied physiology, 96, 363-369. ##Luo, Yongjun, Lu, Guoshou, Chen, Yu, Liu, Fuyu, Xu, Gang, Yin, Jun, & Gao, Yuqi. (2013). Long-term cycles of hypoxia and normoxia increase the contents of liver mitochondrial DNA in rats. European journal of applied physiology, 113(1), 223-232. ##Ma, Xiaowen, McKeen, Tara, Zhang, Jianhua, & Ding, Wen-Xing. (2020). Role and mechanisms of mitophagy in liver diseases. Cells, 9(4), 837. ##Maiti, Panchanan, Muthuraju, S, Ilavazhagan, G, & Singh, Shashi B. (2008). Hypobaric hypoxia induces dendritic plasticity in cortical and hippocampal pyramidal neurons in rat brain. Behavioural brain research, 189(2), 233-243. ##Muscella, Antonella, Stefàno, Erika, Lunetti, Paola, Capobianco, Loredana, & Marsigliante, Santo. (2020). The regulation of fat metabolism during aerobic exercise. Biomolecules, 10(12), 1699. ##Narendra, Derek P, Jin, Seok Min, Tanaka, Atsushi, Suen, Der-Fen, Gautier, Clement A, Shen, Jie, . . . Youle, Richard J. (2010). PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS biology, 8(1), e1000298. ##Ni, Hong-Min, Williams, Jessica A, & Ding, Wen-Xing. (2015). Mitochondrial dynamics and mitochondrial quality control. Redox biology, 4, 6-13. ##Pino-de la Fuente, Francisco, Quezada, Laura, Sepúlveda, Carlos, Monsalves-Alvarez, Matias, Rodríguez, Juan M, Sacristan, Camila, . . . Troncoso, Rodrigo. (2019). Exercise regulates lipid droplet dynamics in normal and fatty liver. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1864(12), 158519. ##Roberts, Fiona Louise, & Markby, Greg Robert. (2021). New Insights into Molecular Mechanisms Mediating Adaptation to Exercise; A Review Focusing on Mitochondrial Biogenesis, Mitochondrial Function, Mitophagy and Autophagy. Cells, 10(10), 2639. ##Sabag, Angelo, Barr, Loren, Armour, Mike, Armstrong, Alex, Baker, Callum J, Twigg, Stephen M, . . . George, Jacob. (2022). The effect of high-intensity interval training vs moderate-intensity continuous training on liver fat: a systematic review and meta-analysis. The Journal of Clinical Endocrinology & Metabolism, 107(3), 862-881. ##SaiRam, M, Sharma, SK, Dipti, P, Pauline, T, Kain, AK, Mongia, SS, . . . Devendra, K. (1998). Effect of hypobaric hypoxia on immune function in albino rats. International journal of biometeorology, 42(1), 55-59. ##Santos-Alves, E, Marques-Aleixo, I, Rizo-Roca, D, Torrella, JR, Oliveira, PJ, Magalhães, J, & Ascensão, A. (2015). Exercise modulates liver cellular and mitochondrial proteins related to quality control signaling. Life sciences, 135, 124-130. ##Schönenberger, Miriam Johanna, & Kovacs, Werner Josef. (2015). Hypoxia signaling pathways: modulators of oxygen-related organelles. Frontiers in cell and developmental biology, 3, 42. ##Semenza, Gregg L. (1998). Hypoxia-inducible factor 1: master regulator of O2 homeostasis. Current opinion in genetics & development, 8(5), 588-594. ##Song, Kang, Zhang, Yifan, Ga, Qin, Bai, Zhenzhong, & Ge, Ri-Li. (2020). High-altitude chronic hypoxia ameliorates obesity-induced non-alcoholic fatty liver disease in mice by regulating mitochondrial and AMPK signaling. Life sciences, 252, 117633. ##Soori, Rahman, Mohamad Zadeh, Mahla, Ghram, Amine, Choobineh, Siroos, Mohammadi Mirzaei, Roohallah, & Azevedo Voltarelli, Fabrício. (2020). Effects of Hypoxic and Normoxic Training in Altitude on HIF-1α and PGC-1α Levels in Elite Endurance Runners. Sport Sciences and Health Research, 11(1), 61-70. ##Takahashi, Hirokazu, Kotani, Kazuhiko, Tanaka, Kenichi, Egucih, Yuichiro, & Anzai, Keizo. (2018). Therapeutic approaches to nonalcoholic fatty liver disease: exercise intervention and related mechanisms. Frontiers in endocrinology, 588. ##Tian, Weili, Li, Wen, Chen, Yinqin, Yan, Zeming, Huang, Xia, Zhuang, Haixia, . . . Lin, Chunxia. (2015). Phosphorylation of ULK1 by AMPK regulates translocation of ULK1 to mitochondria and mitophagy. FEBS letters, 589(15), 1847-1854. ##Tondpa Khaghani, Behdad, Dehkhoda, Mohammad Reza, & Amani Shalamzari, Sadegh. (2019). Improvement of aerobic power and health status in overweight patients with non-alcoholic fatty liver disease with high intensity interval training. Payavard Salamat, 13(1), 71-80. ## Undamatla, R, Fagunloye, OG, Chen, J, Edmunds, LR, Murali, A, Mills, A, . . . Gibson, G. (2023). Reduced mitophagy is an early feature of NAFLD and liver-specific PARKIN knockout hastens the onset of steatosis, inflammation and fibrosis. Scientific Reports, 13(1), 7575. ##Yang, Xing-Xin, Wang, Xi, Shi, Ting-Ting, Dong, Jin-Cai, Li, Feng-Jiao, Zeng, Lin-Xi, . . . Yu, Jie. (2019). Mitochondrial dysfunction in high-fat diet-induced nonalcoholic fatty liver disease: The alleviating effect and its mechanism of Polygonatum kingianum. Biomedicine & Pharmacotherapy, 117, 109083. ##Youle, Richard J, & Narendra, Derek P. (2011). Mechanisms of mitophagy. Nature reviews Molecular cell biology, 12(1), 9-14. ##Zheng, Youwei, Wang, Shiting, Wu, Jialiang, & Wang, Yong. (2023). Mitochondrial metabolic dysfunction and non-alcoholic fatty liver disease: new insights from pathogenic mechanisms to clinically targeted therapy. Journal of Translational Medicine, 21(1), 510.. ##