Expression of PPARα and PGC1α proteins in cardiac tissue of male rats with type 2 diabetes after high intensity interval training

Document Type : Research Paper

Authors

1 Department of Exercise Physiology, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

2 Department of Exercise Physiology, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran

10.22080/jaep.2023.23937.2113

Abstract

Objectives: Physical activity in patients with diabetes can affect myocardial structure and function, the aim of this study was to evaluate the effect of 8 weeks of high intensity interval training (HIIT) on expression of PPARα and PGC1α proteins in the heart tissue of male Wistar rats with type 2 diabetes.
Methods: In the present study, 28 male Wistar rats were randomly divided into four groups Control Healthy, Exercise Healthy, Diabetes Control, and Diabetes Exercise. After a period of high-fat diet and then after induction of diabetes, animals in Diabetes Exercise and Exercise Healthy groups performed the HIIT training protocol for 8 weeks and 5 sessions per week. 48 hours after the last training session, cardiac tissue was extracted and the levels of PGC-1α and PPARα proteins were assessed using Western blotting. Data were analyzed using one-way ANOVA and Tukey post hoc test at a significance level of P<0.05.
Results: The results showed that the expression levels of PGC-1α protein in the Diabetes Control group decreased significantly compared to the Control Healthy group (P=0.001) and increased significantly in the Diabetes Exercise group compared to the Diabetes Control group (P=0.001). Also, expression levels of PPARα protein in the Diabetes Control and Diabetes Exercise groups increased significantly compared to the healthy groups (P=0.001). Moreover, the amount of PPARα protein showed a significant decrease in the Diabetes Exercise group compared to the Diabetes Control group (P=0.001).
Conclusion: HIIT exercises can probably play an effective role in regulating the PPARα/PGC1α signaling pathway and modulate the adverse changes caused by diabetes in this signaling pathway related to mitochondrial biogenesis.

Keywords


## Shahavand, H., Hosseinpour Delavar, S., Behpoor, N., Safikhani, H., & Azizi, M. (2021). Effect of aerobic exercise on vascular endothelial growth factor-B (VEGF-B) gene expression and total tissue antioxidant status (TAS) in diabetic rats. Journal of Applied Exercise Physiology, 17(33), 5-6.## Monzemi, A. H., Etemad, Z., Nazari, A., & Mohammadi, M. (2022). The effect of eight weeks of endurance training along with cinnamon extract consumption on expression of angiogenic markers in  endothelial dysfunction of the coronary arteries in streptozotocin-diabetic male rats. Journal of Sport and Exercise Physiology, 15(1), 11-20.##  Lathief, S., & Inzucchi, S. E. (2016). Approach to diabetes management in patients with CVD. Trends in cardiovascular medicine, 26(2), 165-179. ## Filosto, M., Scarpelli, M., Cotelli, M. S., Vielmi, V., Todeschini, A., Gregorelli, V., . . . Padovani, A. (2011). The role of mitochondria in neurodegenerative diseases. Journal of neurology, 258(10), 1763-1774.##  Schilling, J. D. (2015). The mitochondria in diabetic heart failure: from pathogenesis to therapeutic promise. Antioxidants & redox signaling, 22(17), 1515-1526## Montaigne, D., Marechal, X., Coisne, A., Debry, N., Modine, T., Fayad, G., . . . Sebti, Y. (2014). Myocardial contractile dysfunction is associated with impaired mitochondrial function and dynamics in type 2 diabetic but not in obese patients. Circulation, 130(7), 554-564.##  Yang, X., Yuan, H., Li, J., Fan, J., Jia, S., Kou, X., & Chen, N. (2016). Swimming intervention mitigates HFD-induced obesity of rats through PGC-1α-irisin pathway. European review for medical and pharmacological sciences, 20(10), 2123-2130.## Wang, H., Yan, W.-J., Zhang, J.-L., Zhang, F.-Y., Gao, C., Wang, Y.-J., . . . Tao, L. (2017). Adiponectin partially rescues high glucose/high fat-induced impairment of mitochondrial biogenesis and function in a PGC-1α dependent manner.##  Finck, B. N., & Kelly, D. P. (2007). Peroxisome proliferator–activated receptor γ coactivator-1 (PGC-1) regulatory cascade in cardiac physiology and disease. Circulation, 115(19), 2540-2548. ##  Castro, V., Grisdale-Helland, B., Helland, S. J., Torgersen, J., Kristensen, T., Claireaux, G., . . . Takle, H. (2013). Cardiac molecular-acclimation mechanisms in response to swimming-induced exercise in Atlantic salmon. PloS one, 8(1), e55056.##  Ko, T. H., Marquez, J. C., Kim, H. K., Jeong, S. H., Lee, S., Youm, J. B., . . . Won, D. N. (2018). Resistance exercise improves cardiac function and mitochondrial efficiency in diabetic rat hearts. Pflügers Archiv-European Journal of Physiology, 470(2), 263-275. ## Lee, T.-I., Kao, Y.-H., Chen, Y.-C., Huang, J.-H., Hsiao, F.-C., & Chen, Y.-J. (2013). Peroxisome proliferator-activated receptors modulate cardiac dysfunction in diabetic cardiomyopathy. Diabetes research and clinical practice, 100(3), 330-339.## Yang, S., Chen, C., Wang, H., Rao, X., Wang, F., Duan, Q., . . . Zou, M.-H. (2012). Protective effects of Acyl-coA thioesterase 1 on diabetic heart via PPARα/PGC1α signaling. PloS one, 7(11), e50376.## Wu, L., Wang, K., Wang, W., Wen, Z., Wang, P., Liu, L., & Wang, D. W. (2018). Glucagon‐like peptide‐1 ameliorates cardiac lipotoxicity in diabetic cardiomyopathy via the PPAR α pathway. Aging cell, 17(4), e12763.## Duncan, J. G., Bharadwaj, K. G., Fong, J. L., Mitra, R., Sambandam, N., Courtois, M. R., . . . Kelly, D. P. (2010). Rescue of cardiomyopathy in PPARα transgenic mice by deletion of lipoprotein lipase identifies sources of cardiac lipids and PPARα activators. Circulation, 121(3), 426.## Granata, C., Jamnick, N. A., & Bishop, D. J. (2018). Principles of exercise prescription, and how they influence exercise-induced changes of transcription factors and other regulators of mitochondrial biogenesis. Sports Medicine, 48(7), 1541-1559. ##  Di, W., Lv, J., Jiang, S., Lu, C., Yang, Z., Ma, Z., . . . Xu, B. (2018). PGC-1: the energetic regulator in cardiac metabolism. Current issues in molecular biology, 28(1), 29-46.##  Kolwicz Jr, S. C. (2018). An “exercise” in cardiac metabolism. Frontiers in Cardiovascular Medicine, 5, 66. ##  Hafstad, A. D., Boardman, N. T., Lund, J., Hagve, M., Khalid, A. M., Wisløff, U., . . . Aasum, E. (2011). High intensity interval training alters substrate utilization and reduces oxygen consumption in the heart. Journal of applied physiology, 111(5), 1235-1241.## Lu, Z., Xu, Y., Song, Y., Bíró, I., & Gu, Y. (2021). A mixed comparisons of different intensities and types of physical exercise in patients with diseases related to oxidative stress: a systematic review and network meta-analysis. Frontiers in Physiology, 12.## Wang, L., Lavier, J., Hua, W., Wang, Y., Gong, L., Wei, H., . . . Zhang, Y. (2021). High-intensity interval training and moderate-intensity continuous training attenuate oxidative damage and promote myokine response in the skeletal muscle of ApoE KO mice on high-fat diet. Antioxidants, 10(7), 992.## Li, M., Li, W., Yoon, J.-H., Jeon, B. H., & Lee, S. K. (2015). Resistance exercise training increase activation of AKT-eNOS and Ref-1 expression by FOXO-1 activation in aorta of F344 rats. Journal of exercise nutrition & biochemistry, 19(3), 165. ## de Bem, G. F., Costa, C. A., Santos, I. B., Cristino Cordeiro, V. d. S., de Carvalho, L. C. R. M., de Souza, M. A. V., . . . Resende, A. C. (2018). Antidiabetic effect of Euterpe oleracea Mart.(açaí) extract and exercise training on high-fat diet and streptozotocin-induced diabetic rats: A positive interaction. PloS one, 13(6), e0199207. ## Subhasree, N., Kamella, A., Kaliappan, I., Agrawal, A., & Dubey, G. P. (2015). Antidiabetic and antihyperlipidemic activities of a novel polyherbal formulation in high fat diet/streptozotocin induced diabetic rat model. Indian journal of pharmacology, 47(5), 509 ## Henderson, K. K., Wagner, H., Favret, F., Britton, S. L., Koch, L. G., Wagner, P. D., & Gonzalez, N. C. (2002). Determinants of maximal O2 uptake in rats selectively bred for endurance running capacity. Journal of applied physiology, 93(4), 1265-1274. ## Thomas, C., Bishop, D., Moore-Morris, T., & Mercier, J. (2007). Effects of high-intensity training on MCT1, MCT4, and NBC expressions in rat skeletal muscles: influence of chronic metabolic alkalosis. American Journal of Physiology-Endocrinology and Metabolism, 293(4), E916-E922## Elezaby, A., Sverdlov, A. L., Tu, V. H., Soni, K., Luptak, I., Qin, F., . . . Schaffer, J. E. (2015). Mitochondrial remodeling in mice with cardiomyocyte-specific lipid overload. Journal of molecular and cellular cardiology, 79, 275-283## Chang, L.-T., Sun, C.-K., Wang, C.-Y., Youssef, A. A., Wu, C.-J., Chua, S., & Yip, H.-K. (2006). Downregulation of Peroxisme Proliferator Activated Receptor Gamma Co-Activator 1α in Diabetic Rats Role of Pharmacomodulation. International heart journal, 47(6), 901-910. ## Nasab, H. R., Habibi, A., Nikbakht, M., Rashno, M., & Shakerian, S. (2021). Changes in Serum Levels and Gene Expression of PGC-1α in The Cardiac Muscle of Diabetic Rats: The Effect of Dichloroacetate and Endurance Training. Cell Journal (Yakhteh), 22(4), 425. ## Fang, W.-j., Wang, C.-j., He, Y., Zhou, Y.-l., Peng, X.-d., & Liu, S.-k. (2018). Resveratrol alleviates diabetic cardiomyopathy in rats by improving mitochondrial function through PGC-1α deacetylation. Acta Pharmacologica Sinica, 39(1), 59-73## Yin, Z., Zhao, Y., He, M., Li, H., Fan, J., Nie, X., . . . Wang, D. W. (2019). MiR-30c/PGC-1β protects against diabetic cardiomyopathy via PPARα. Cardiovascular diabetology, 18(1), 1-15.## Cai, H., Chen, S., Liu, J., & He, Y. (2019). An attempt to reverse cardiac lipotoxicity by aerobic interval training in a high-fat diet-and streptozotocin-induced type 2 diabetes rat model. Diabetology & Metabolic Syndrome, 11(1), 1-12. ## Wang, H., Bei, Y., Lu, Y., Sun, W., Liu, Q., Wang, Y., . . . Kong, X. (2015). Exercise prevents cardiac injury and improves mitochondrial biogenesis in advanced diabetic cardiomyopathy with PGC-1α and Akt activation. Cellular physiology and biochemistry, 35(6), 2159-2168. ## Cassidy, S., Thoma, C., Houghton, D., & Trenell, M. I. (2017). High-intensity interval training: a review of its impact on glucose control and cardiometabolic health. Diabetologia, 60(1), 7-23. ## Wang, S. Y., Zhu, S., Wu, J., Zhang, M., Xu, Y., Xu, W., . . . Liu, J. (2020). Exercise enhances cardiac function by improving mitochondrial dysfunction and maintaining energy homoeostasis in the development of diabetic cardiomyopathy. Journal of Molecular Medicine, 98(2), 245-261. ## De Sousa, R. A. L. (2018). Brief report of the effects of the aerobic, resistance, and high-intensity interval training in type 2 diabetes mellitus individuals. International Journal of Diabetes in Developing Countries, 38(2), 138-145. ## Jokar, M., Sherafati Moghadam, M., & Daryanoosh, F. (2021). The effect of a period of high-intensity interval training on the content of AMPK and PGC-1α proteins in the heart muscle tissue of rats with type 2 diabetes. Daneshvar Medicine, 29(1), 23-34##.