استرس اکسیداتیو ناشی از فعالیت- آیا مصرف آنتی اکسیدان ها لازم است؟

نوع مقاله: مقاله پژوهشی

نویسنده

دانشیار فیزیولوژی ورزشی، گروه تربیت بدنی و علوم ورزشی، واحد اردبیل، دانشگاه آزاداسلامی، اردبیل، ایران

چکیده

در دو دهه اخیر استرس اکسیداتیو ناشی از فعالیت و آنتی اکسیدان ها به یکی از حیطه های پژوهشی مهم و پرطرفدار در بین محققین علوم ورزشی تبدیل شده است. استرس اکسیداتیو به مفهوم به هم خوردن توازن بین گونه های فعال و سیستم آنتی اکسیدانی بدن به نفع گونه های فعال و رادیکال های آزاد است. فعالیت بدنی شدید و طولانی مدت می تواند باعث افزایش تولید گونه های فعال و رادیکال های آزاد شده و منجر به بروز استرس اکسیداتیو شود. ضمنا استرس اکسیداتیو می تواند باعث تسریع پدیده پیری و بروز بسیاری از بیماری های مختلف از قبیل سرطان و سندرم متابولیک شود. به همین دلیل، بسیاری از قهرمانان ورزشی و حتی مردم عادی جهت جلوگیری از اثرات منفی فعالیت بدنی و پیشگیری از استرس اکسیداتیو ناشی از فعالیت و آسیب های عضلانی به مصرف مکمل های آنتی اکسیدانی روی آورده­اند. بهرحال، تحقیقات اخیر نشان می دهند که مصرف آنتی اکسیدان ها گاها نه تنها باعث کاهش استرس اکسیداتیو نمی شود بلکه باعث افزایش آن نیز می گردد. ضمنا محققین دریافته اند که مصرف مداوم مکمل های آنتی اکسیدانی می تواند از اثرات سازگارکننده فعالیت بدنی از قبیل آنژیوژنزیس، بیوژنزیس میتوکندریایی و هایپرتروفی عضلانی جلوگیری نماید. مقاله حاضر مروری است بر تحقیقات اخیر و پاسخی به این سوال مهم که آیا واقعا مصرف مکمل های آنتی اکسیدانی برای افرادی که به فعالیت بدنی می پردارند، ضرورت دارد؟

کلیدواژه‌ها


عنوان مقاله [English]

.

نویسنده [English]

  • . .
.
چکیده [English]

.

##Veskoukis AS, Tsatsakis AM, Kouretas D. Dietary oxidative stress and antioxidant defense with an emphasis on plant extract administration. Cell Stress and Chaperones. 2012;17(1):11-21.##Halliwell B, Gutteridge J. Free radicals in biology and medicine, 4th edn. Clarendon. Oxford; 2007.##Di Meo S, Venditti P. Mitochondria in exercise-induced oxidative stress. Neurosignals. 2001;10(1-2):125-40.##Steinbacher P, Eckl P. Impact of oxidative stress on exercising skeletal muscle. Biomolecules. 2015;5(2):356-77.##Sjödin B, Westing YH, Apple FS. Biochemical mechanisms for oxygen free radical formation during exercise. Sports Medicine. 1990;10(4):236-54.##Hansford RG, Hogue BA, Mildaziene V. Dependence of H2O2 formation by rat heart mitochondria on substrate availability and donor age. Journal of bioenergetics and biomembranes. 1997;29(1):89-95.##St-Pierre J, Buckingham JA, Roebuck SJ, Brand MD. Topology of superoxide production from different sites in the mitochondrial electron transport chain. Journal of Biological Chemistry. 2002;277(47):44784-90.##Yavari A, Javadi M, Mirmiran P, Bahadoran Z. Exercise-induced oxidative stress and dietary antioxidants. Asian journal of sports medicine. 2015;6(1).##Ji LL. Exercise‐induced modulation of antioxidant defense. Annals of the New York Academy of Sciences. 2002;959(1):82-92.##               Kelkar G, Subhadra K, Chengappa RK. Effect of antioxidant supplementation on hematological parameters, oxidative stress and performance of Indian athletes. J Hum Ecol. 2008;24(3):209-13.##Peake J, Suzuki K. Neutrophil activation, antioxidant supplements and exercise-induced oxidative stress. Exerc Immunol Rev. 2004;10(1):129-41.##Lambertucci RH, Levada-Pires AC, Rossoni LV, Curi R, Pithon-Curi TC. Effects of aerobic exercise training on antioxidant enzyme activities and mRNA levels in soleus muscle from young and aged rats. Mechanisms of ageing and development. 2007;128(3):267-75.##Powers SK, Jackson MJ. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiological reviews. 2008;88(4):1243-76.##Powers SK, Talbert EE, Adhihetty PJ. Reactive oxygen and nitrogen species as intracellular signals in skeletal muscle. The Journal of physiology. 2011;589(9):2129-38.##Kinnunen S, Atalay M, Hyyppä S, Lehmuskero A, Hänninen O, Oksala N. Effects of prolonged exercise on oxidative stress and antioxidant defense in endurance horse. J Sports Sci Med. 2005;4(4):415-21.##Vollaard NB, Reeder BJ, Shearman JP, Menu P, Wilson MT, Cooper CE. A new sensitive assay reveals that hemoglobin is oxidatively modified in vivo. Free Radical Biology and Medicine. 2005;39(9):1216-28.##Blokhina O, Virolainen E, Fagerstedt KV. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Annals of botany. 2003;91(2):179-94.##Gomes EC, Silva AN, Oliveira MRd. Oxidants, antioxidants, and the beneficial roles of exercise-induced production of reactive species. Oxidative medicine and cellular longevity. 2012;2012.##Nakhostin-Roohi B, Niknam Z, Vaezi N, Mohammadi S, Bohlooli S. Effect of single dose administration of methylsulfonylmethane on oxidative stress following acute exhaustive exercise. Iranian Journal of Pharmaceutical Research. 2013;12(4):845-53.##Nakhostin-Roohi B, Babaei P, Rahmani-Nia F, Bohlooli S. Effect of vitamin C supplementation on lipid peroxidation, muscle damage and inflammation after 30-min exercise at 75% VO^ sub 2max. Journal of Sports Medicine and Physical Fitness. 2008;48(2):217.##Nikolaidis MG, Kerksick CM, Lamprecht M, McAnulty SR. Does vitamin C and E supplementation impair the favorable adaptations of regular exercise? Oxidative medicine and cellular longevity. 2012;2012.##Calabrese E, Baldwin L. Defining hormesis Hum Exp Toxicol 21: 91–97. Find this article online. 2002.##Cook RR, Calabrese EJ. Hormesis is biology, not religion. Environmental health perspectives. 2006;114(12):A688.##Radak Z, Taylor AW, Ohno H, Goto S. Adaptation to exercise-induced oxidative stress: from muscle to brain. Exercise immunology review. 2001;7:90-107.##Selye H. The stress of life. 1956.##Radak Z, Chung HY, Goto S. Systemic adaptation to oxidative challenge induced by regular exercise. Free Radical Biology and Medicine. 2008;44(2):153-9.##        Radak Z, Chung HY, Koltai E, Taylor AW, Goto S. Exercise, oxidative stress and hormesis. Ageing research reviews. 2008;7(1):34-42.##Gomez-Cabrera M-C, Domenech E, Viña J. Moderate exercise is an antioxidant: upregulation of antioxidant genes by training. Free Radical Biology and Medicine. 2008;44(2):126-31.##Kanter M. Free radicals, exercise and antioxidant supplementation. Proceedings of the Nutrition Society. 1998;57(01):9-13.##Wilson D, Johnson P. Exercise modulates antioxidant enzyme gene expression in rat myocardium and liver. Journal of Applied Physiology. 2000;88(5):1791-6.##Radák Z, Apor P, Pucsok J, Berkes I, Ogonovszky H, Pavlik G, et al. Marathon running alters the DNA base excision repair in human skeletal muscle. Life sciences. 2003;72(14):1627-33.##                Radak Z, Chung HY, Goto S. Exercise and hormesis: oxidative stress-related adaptation for successful aging. Biogerontology. 2005;6(1):71-5.##Powers SK, Ji L, Leeuwenburgh C. Exercise training-induced alterations in skeletal muscle antioxidant capacity: a brief review. Medicine and science in sports and exercise. 1999;31(7):987-97.##Miyazaki H, Oh-ishi S, Ookawara T, Kizaki T, Toshinai K, Ha S, et al. Strenuous endurance training in humans reduces oxidative stress following exhausting exercise. European journal of applied physiology. 2001;84(1-2):1-6.##Musaro A, Fulle S, Fano G. Oxidative stress and muscle homeostasis. Current Opinion in Clinical Nutrition & Metabolic Care. 2010;13(3):236-42.##Bloor CM. Angiogenesis during exercise and training. Angiogenesis. 2005;8(3):263-71.##Flamme I, Frölich T, Risau W. Molecular mechanisms of vasculogenesis and embryonic angiogenesis. Journal of cellular physiology. 1997;173(2):206-10.##     Prior BM, Yang H, Terjung RL. What makes vessels grow with exercise training? Journal of Applied Physiology. 2004;97(3):1119-28.##Li WW, Tsakayannis D, Li VW. Angiogenesis: a control point for normal and delayed wound healing. Contemp Surg. 2003;1:5-11.##Lehoux S. Redox signalling in vascular responses to shear and stretch. Cardiovascular research. 2006;71(2):269-79.##West XZ, Malinin NL, Merkulova AA, Tischenko M, Kerr BA, Borden EC, et al. Oxidative stress induces angiogenesis by activating TLR2 with novel endogenous ligands. Nature. 2010;467(7318):972-6.##Adhihetty PJ, Irrcher I, Joseph AM, Ljubicic V, Hood DA. Plasticity of skeletal muscle mitochondria in response to contractile activity. Experimental physiology. 2003;88(1):99-107.##Lee H-C, Wei Y-H. Mitochondrial biogenesis and mitochondrial DNA maintenance of mammalian cells under oxidative stress. The international journal of biochemistry & cell biology. 2005;37(4):822-34.##Pesce V, Cormio A, Fracasso F, Lezza AM, Cantatore P, Gadaleta MN. Age-related changes of mitochondrial DNA content and mitochondrial genotypic and phenotypic alterations in rat hind-limb skeletal muscles. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences. 2005;60(6):715-23.##Irrcher I, Ljubicic V, Hood DA. Interactions between ROS and AMP kinase activity in the regulation of PGC-1α transcription in skeletal muscle cells. American Journal of Physiology-Cell Physiology. 2009;296(1):C116-C23.##Smith MA, Reid MB. Redox modulation of contractile function in respiratory and limb skeletal muscle. Respiratory physiology & neurobiology. 2006;151(2):229-41.##Hollander J, Fiebig R, Gore M, Bejma J, Ookawara T, Ohno H, et al. Superoxide dismutase gene expression in skeletal muscle: fiber-specific adaptation to endurance training. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 1999;277(3):R856-R62.##Powers SK, Criswell D, Lawler J, Martin D, Ji LL, Herb RA, et al. Regional training-induced alterations in diaphragmatic oxidative and antioxidant enzymes. Respiration physiology. 1994;95(2):227-37.##Holloszy J. Regulation by exercise of skeletal muscle content of mitochondria and GLUT4. J Physiol Pharmacol. 2008;59(Suppl 7):5-18.## Olesen J, Kiilerich K, Pilegaard H. PGC-1α-mediated adaptations in skeletal muscle. Pflügers Archiv-European Journal of Physiology. 2010;460(1):153-62.##Kang C, Ji LL. Role of PGC-1α in muscle function and aging. Journal of Sport and Health Science. 2013;2(2):81-6.##Pilegaard H, Osada T, Andersen LT, Helge JW, Saltin B, Neufer PD. Substrate availability and transcriptional regulation of metabolic genes in human skeletal muscle during recovery from exercise. Metabolism. 2005;54(8):1048-55.##Krämer D, Ahlsen M, Norrbom J, Jansson E, Hjeltnes N, Gustafsson T, et al. Human skeletal muscle fibre type variations correlate with PPARα, PPARδ and PGC‐1α mRNA. Acta physiologica. 2006;188(3‐4):207-16.##Mathai AS, Bonen A, Benton CR, Robinson DL, Graham TE. Rapid exercise-induced changes in PGC-1α mRNA and protein in human skeletal muscle. Journal of applied physiology. 2008;105(4):1098-105.##Little JP, Safdar A, Bishop D, Tarnopolsky MA, Gibala MJ. An acute bout of high-intensity interval training increases the nuclear abundance of PGC-1α and activates mitochondrial biogenesis in human skeletal muscle. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2011;300(6):R1303-R10.##Cobley JN, Bartlett J, Kayani A, Murray S, Louhelainen J, Donovan T, et al. PGC-1α transcriptional response and mitochondrial adaptation to acute exercise is maintained in skeletal muscle of sedentary elderly males. Biogerontology. 2012;13(6):621-31.##Wright DC, Han D-H, Garcia-Roves PM, Geiger PC, Jones TE, Holloszy JO. Exercise-induced mitochondrial biogenesis begins before the increase in muscle PGC-1α expression. Journal of Biological Chemistry. 2007;282(1):194-9.##Dodd SL, Gagnon BJ, Senf SM, Hain BA, Judge AR. Ros‐mediated activation of NF‐κB and Foxo during muscle disuse. Muscle & nerve. 2010;41(1):110-3.##Derbre F, Ferrando B, Gomez-Cabrera MC, Sanchis-Gomar F, Martinez-Bello VE, Olaso-Gonzalez G, et al. Inhibition of xanthine oxidase by allopurinol prevents skeletal muscle atrophy: role of p38 MAPKinase and E3 ubiquitin ligases. PloS one. 2012;7(10):e46668.##Scheele C, Nielsen S, Pedersen BK. ROS and myokines promote muscle adaptation to exercise. Trends in Endocrinology & Metabolism. 2009;20(3):95-9.##Jackson MJ, Papa S, Bolaños J, Bruckdorfer R, Carlsen H, Elliott RM, et al. Antioxidants, reactive oxygen and nitrogen species, gene induction and mitochondrial function. Molecular aspects of medicine. 2002;23(1):209-85.##Jackson MJ. Reactive oxygen species and redox-regulation of skeletal muscle adaptations to exercise. Philosophical Transactions of the Royal Society of London B: Biological Sciences. 2005;360(1464):2285-91.##Handayaningsih A-E, Iguchi G, Fukuoka H, Nishizawa H, Takahashi M, Yamamoto M, et al. Reactive oxygen species play an essential role in IGF-I signaling and IGF-I-induced myocyte hypertrophy in C2C12 myocytes. Endocrinology. 2011;152(3):912-21.##Kosmidou I, Vassilakopoulos T, Xagorari A, Zakynthinos S, Papapetropoulos A, Roussos C. Production of interleukin-6 by skeletal myotubes: role of reactive oxygen species. American Journal of Respiratory Cell and Molecular Biology. 2002;26(5):587-93.##Ristow M, Zarse K, Oberbach A, Klöting N, Birringer M, Kiehntopf M, et al. Antioxidants prevent health-promoting effects of physical exercise in humans. Proceedings of the National Academy of Sciences. 2009;106(21):8665-70.##Nakhostin‐Roohi B, Barmaki S, Khoshkhahesh F, Bohlooli S. Effect of chronic supplementation with methylsulfonylmethane on oxidative stress following acute exercise in untrained healthy men. Journal of Pharmacy and Pharmacology. 2011;63(10):1290-4.##Parandak K, Arazi H, Khoshkhahesh F, Nakhostin-Roohi B. The effect of two-week L-carnitine supplementation on exercise-induced oxidative stress and muscle damage. Asian journal of sports medicine. 2014;5(2):123.##Javanamani R, Nakhostin-Roohi B. The Effect of One-week Glutamine Supplementation on Oxidative Stress Indices in Healthy Young Men. Journal of Ardabil University of Medical Sciences. 2015;15(1):83-9.##Bohlooli S, Barmaki S, Khoshkhahesh F, Nakhostin-Roohi B. The effect of spinach supplementation on exercise-induced oxidative stress. The Journal of sports medicine and physical fitness. 2015;55(6):609-14.##Teixeira VH, Valente HF, Casal SI, Marques AF, Moreira PA. Antioxidants do not prevent postexercise peroxidation and may delay muscle recovery. Med Sci Sports Exerc. 2009;41(9):1752-60.##